Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Tứ giác ABCD là hình bình hành.
\(\Rightarrow AB=CD\)(tính chất hình bình hành)
và \(AB//CD\Rightarrow\widehat{ABD}=\widehat{BDC}\)(so le trong)
Xét \(\Delta AMB\)và \(\Delta CND\)có:
\(AB=CD\)(cmt)
\(\widehat{ABM}=\widehat{CDN}\)(cmt)
\(BM=DN\)(GT)
\(\Rightarrow\Delta AMB=\Delta CND\left(c.g.c\right)\)
b. Có AC cắt BD tại O
=> O là trung điểm của AC => OA = OC.
=> O là trung điểm của BD => OB = OD.
Có OB = OM + MD
OD = ON + ND
mà OB = OD, MB = ND
=> OM = ON => O là trung điểm của MN.
Trong tứ giác AMCN có:
OA = OC, OM = ON
=> Tứ giác AMCN có 2 đường chéo AC và MN cắt nhau tại trung điểm của mỗi đường nên là hình bình hành.
Xét tứ giác OBMC ta có
2 đường chéo BC và OM cắt nhau tại I
I là trung điểm BC (gt)
I là trung điểm OM ( M là điểm đối xứng của O qua I)
-> tứ giác OBMC là hbh
cmtt tứ giác ODNC là hbh
ta có
BM // OC ( OBMC là hbh)
DN // OC (ODNC là hbh)
-.> BM//CN
ta có
BM // OC ( OBMC là hbh)
DN // OC (ODNC là hbh)
-.> BM//CN // OC
ta có
BM = OC ( OBMC là hbh)
DN = OC (ODNC là hbh)
-.> BM = ON
Xét tứ giác BMND ta có
BM // ON (cmt)
BM = ON (cmt)
-> tứ giác BMND là hbh
b) giả sử BMND là hcn
ta có
MB vuông góc BD ( BNMD là hcn)
BM // OC ( OBMC là hbh)
-> BD vuông góc OC tại O
Vậy AC vuông góc BD thì BMND là hcn
c) ta có
BD // CM ( OB // CM ; O thuộc BD)
BD // CN ( OD //CN . O thuộc BD)
-> CM trùng CN
-> C,N,M thẳng hàng
Bài 2:
a: Xét tứ giác AMCK có
I là trung điểm của AC
I là trug điểm của MK
Do đó: AMCK là hình bình hành
mà \(\widehat{AMC}=90^0\)
nên AMCK là hình chữ nhật
b: Để AMCK là hình vuông thì AM=CM
=>AM=BC/2
=>ΔABC vuông tại A
Bài 1:
A B C D M N P Q E F
a) Xét tam giác ABC có M là trung điểm của AB (gt) ,E là trung điểm của AC (gt)
\(\Rightarrow ME\)là đường trung bình tam giác ABC
\(\Rightarrow ME=\frac{1}{2}BC\left(tc\right)\left(1\right)\)
Xét tam giác ADC có E là trung điểm của AC (gt) ,P là trung điểm của DC (gt)
\(\Rightarrow PE\)là đường trung bình của tam giác ADC
\(\Rightarrow PE=\frac{1}{2}AD\left(tc\right)\left(2\right)\)
mà \(AD=BC\left(gt\right)\left(3\right)\)
Từ (1) , (2) và (3) \(\Rightarrow EM=PE\)
CMTT: \(PE=FP,FM=ME\)
\(\Rightarrow ME=EP=PF=FM\)
Xét tứ giác MEPF có:
\(ME=EP=PF=FM\left(cmt\right)\)
\(\Rightarrow MEPF\)là hình thoi ( dhnb)
b) Vì \(MEPF\)là hình thoi (cmt)
\(\Rightarrow FE\)giao với MP tại trung điểm mỗi đường (tc) (4)
Xét tam giác ADB có M là trung điểm của AB(gt) ,Q là trung điểm của AD (gt)
\(\Rightarrow MQ\)là đường trung bình của tam giác ADB
\(\Rightarrow MQ//DB,MQ=\frac{1}{2}DB\left(tc\right)\left(5\right)\)
Xét tam giác BDC có N là trung điểm của BC(gt) , P là trung điểm của DC(gt)
\(\Rightarrow NP\)là đường trung bình của tam giác BDC
\(\Rightarrow NP//DB,NP=\frac{1}{2}DB\left(tc\right)\left(6\right)\)
Từ (5) và (6) \(\Rightarrow MQ//PN,MQ=PN\)
Xét tứ giác MQPN có \(\Rightarrow MQ//PN,MQ=PN\)
\(\Rightarrow MQPN\)là hình bình hành (dhnb)
\(\Rightarrow MP\)giao QN tại trung điểm mỗi đường (tc) (7)
Từ (4) và (7) \(\Rightarrow MP,NQ,EF\)cắt nhau tại một điểm
c) Xét tam giác ABD có Q là trung điểm của AD (gt), F là trung điểm của BD(gt)
\(\Rightarrow QF\)là đường trung bình của tam giác ADB
\(\Rightarrow QF//AB\left(8\right)\)
CMTT: \(FN//CD\)và \(EN//AB\)
Mà Q,F,E,N thẳng hàng
\(\Rightarrow AB//CD\)
Vậy để Q,F,E,N thẳng hàng thì tứ giác ABCD phải thêm điều kiện \(AB//CD\)
a)ABCD la hinh binh hanh:O la giao diem 2 duong cheo
=>O la trung diem cua AC,BD
O la trung diem AC=>AO=OC
ma AB//CD(2 canh doi cua hinh binh hanh)
=>goc BAC=goc ACD(so le trong)
hay goc EAO= goc OCF
xet 2 tam giac AOE va COF co:
AO=CO
gocAOE=goc COF (doi dinh)
goc EAO= goc OCF
=>tam giac AOE=tam giac COF(g.c.g)
=>OE=OF