K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

bài nãy dễ mk ms đk cô giáo chữa cho  ^~^

19 tháng 6 2018

a) \(BE;DF\perp AC\text{ nên }BE//DF\)

\(\Delta BEO=\Delta DFO\) (cạnh huyền - góc nhọn)

=> BE = FD

\(\Rightarrow\Delta BEDF\text{ là }HBH\)

b) \(\Delta BHC~\Delta DKC\) (g.g)

\(\widehat{H}=\widehat{G}=90^o\) 

\(\widehat{CBH}=\widehat{CDK}\) (vì 2 góc này kề bù vs 2 góc bằng nhau là \(\widehat{CBA}=\widehat{ADC}\)

\(\Rightarrow\frac{BC}{DC}=\frac{HC}{KC}\)

\(\Rightarrow CB.CK=CH.CD\)

c) Ta có: \(\Delta ABE~\Delta ACH\)

\(\Rightarrow\frac{AB}{AC}=\frac{AE}{AH}\)

\(\Rightarrow AB.AH=AE.AC\)

\(\Leftrightarrow AD.AK=AF.AC\)

\(\Rightarrow AB.AH+AD.AK=AC.\left(AF+AE\right)=AC.2AO=AC^2\)

18 tháng 12 2021

1: Xét tứ giác ABDN có

AB//DN

AB=DN

Do đó: ABDN là hình bình hành

a: Xét ΔBDE vuông tại D và ΔDCE vuông tại C có

góc E chung

=>ΔBDE đồng dạng với ΔDCE

b: BD=căn 8^2+6^2=10cm

BE=10^2/6=100/6=50/3cm

EC=DC^2/BC=8^2/6=32/3cm

Xét ΔEBD có CH//BD

nên CH/BD=EC/EB

=>CH/10=32/50=16/25

=>CH=160/25=6,4cm

a: Xét ΔAED vuông tại E và ΔCFB vuông tại F có

AD=CB

\(\widehat{ADE}=\widehat{CBF}\)

Do đó: ΔAED=ΔCFB

Suy ra AE=CF: ED=FB

Xét tứ giác AECF có 

AE//CF

AE=CF

Do đó: AECF là hình bình hành

b: Xét ΔKBF vuông tại F và ΔIDE vuông tại E có

FB=ED

\(\widehat{KBF}=\widehat{IDE}\)

Do đó: ΔKBF=ΔIDE

Suy ra: KB=ID

Xét tứ giác KBID có 

KB//ID

KB=ID

Do đó: KBID là hình bình hành

Suy ra: Hai đường chéo KI và BD cắt nhau tại trung điểm của mỗi đường

 

a: Xét ΔAED vuông tại E và ΔCFB vuông tại F có

AD=CB

\(\widehat{ADE}=\widehat{CBF}\)

Do đó: ΔAED=ΔCFB

Suy ra: AE=CF và DE=BF

Xét tứ giác AECF có 

AE//CF

AE=CF

Do đó: AECF là hình bình hành

b: Xét ΔKBF vuông tại F và ΔIDE vuông tại E có

KB=ID

\(\widehat{KBF}=\widehat{IDE}\)

Do đó: ΔKBF=ΔIDE

Suy ra: KB=ID

Xét tứ giác BKDI có

BK//ID

BK=ID

Do đó: BKDI là hình bình hành

Suy ra: Hai đường chéo BD và KI cắt nhau tại trung điểm của mỗi đường