Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do P là trung điểm của BC nên :
=) CP=BP=\(\frac{BC}{2}\)
Do Q là trung điểm của AD nên:
=) AQ=QD=\(\frac{A\text{D}}{2}\)
Mà AD=BC (Tính chất hình bình hành)
=) BP=AQ=PC=QD (1)
Mà 2 cạch AP và BP lại song song với nhau (2)
TỪ (1)và(2) =) Tứ giác ABPQ là hình bình hành
b) Do AD=2AB =) AB =\(\frac{A\text{D}}{2}\)=) AQ=AB
Mà AQ=BP (Tính chất hình bình hành)
Và AB=PQ (Tính chất hình bình hành)
=) AB=BP=PQ=AQ
=) Tứ giác ABPQ là hình thoi
=) 2 đường chéo AP và BQ vuông góc với nhau
Hay AP \(\perp\)BQ
c) Do tứ giác ABPQ là hình bình hành nên =) \(\widehat{A}\) =\(\widehat{P}\)= \(60^0\)
Xét tam giác BPQ có :
QP=PB (chứng minh trên )
\(\widehat{P}\)= \(60^0\)
=) Tam giác BPQ là tam giác đều
=) \(\widehat{B}\) =\(60^0\) (1)
Mà \(\widehat{A}\) =\(\widehat{C}\)=\(60^0\)(Do ABCD là hình bình hành ) (2)
Và QP lại song song với BC =) BQDC là hình thang (3)
Tu (1) ;(2) va (3) =) BQDC là hình thang cân
A B C D E M F N 1 2 3
a, Ta có: CE _|_ AB (gt)
MN _|_ CE (gt)
=> MN // AB
Mà AB // CD (tính chất HBH)
=> MN // CD
=> MNCD là HBH (1)
Lại có: BC = 2AB
Mà AD = BC (t/c HBH), AB = CD (t/c HBH)
=> AD = 2CD
=> \(CD=\frac{AD}{2}\)
Mà \(MD=\frac{AD}{2}\) (M là trung điểm của AD)
=> MD = CD (2)
Từ (1) và (2) => MNCD là hình thoi
b, Vì MNCD là hình thoi => MD = CN
AD = BC (t/c hình HBH)
=>\(CN=\frac{BC}{2}\) hay CN = BN
Xét t/g BCE có: CN = BN (cmt), BE // NF (câu a)
=> EF = FC
=> MF là đường trung tuyến của t.g CME
Mà MF cũng là đường cao của t/g CME
=> t/g CME cân tại M
c, Vì AB // MN (câu a) => góc BAD = góc NMD (đồng vị) (3)
Ta có: góc NMD = góc M1 + góc M2
Vì t/g CME cân tại M (câu b) => MF là tia p/g của góc CME => góc M2 = góc M3
MNCD là hình thoi (câu a) => góc M1 = M2
Do đó góc M1 = góc M2 = góc M3
=>góc NMD = \(2\widehat{M_3}\) (4)
Mà góc M3 = góc AEM (AE//MF;so le trong) (5)
Từ (3),(4),(5) => góc BAD = 2 góc AEM
P/s: hình k đc chuẩn
ta có: MN//AB//CD ( MN và AB cùng vuông góc với CE)
và MD//NC (AD//BC)
=> MNCD là hình bình hành (1)
MD=AD/2
MN=AB=AD/2
nên MD=MN (2)
từ (1)(2) => MNCD là hình thoi.
B) do MN//AB//CD(câu a)
và M là trung điểm AD
=> F là trung điểm EC => MF là đường trung tuyến của tam giác MEC
với lại MF là đường cao của tam giác MEC(MF vuông góc với EC)
=> tam giác MEC cân tại M
C) tam giác MEC cân tại M và MF là đường cao của tam giác MEC
=> MF là đường phân giác của tam giác MEC
=> góc EMF=góc FMC
góc AEM=góc EMF(AB//MN)
góc FMC=góc CMD(MNCD là hình thoi nên đường chéo MC là phân giác)
từ 3 điều trên suy ra góc AEM=EMF=FMC=CMD
=> 2AEM=FMC+CMD
B A M E F D C 1 60 độ
a) - Vì ABCD là hình bình hành(gt)
\(\Rightarrow BC
//AD\)và BC=AD
Mà \(E\in BC,F\in AD\)và \(BE=\frac{1}{2}BC,\text{AF}=\frac{1}{2}AD\)(gt)
Nên\(BE//\text{AF}\)và BE=AF
=> ABEF là hình bình hành (1)
Mặt khác AD=2AB(gt)
=>\(AB=\frac{AD}{2}\)
\(\text{AF}=\frac{AD}{2}\left(gt\right)\)
Nên AB=AF(2)
Từ (1) và (2) => ABEF là hình thoi
=> \(AE\perp BF\)
b) Ta có BC//FD(BC//AD,F thuộc AD)
=> BCDF là hình thang (3)
- Vì ABCD là hình bình hành(gt)
Nên \(\widehat{BAD}=\widehat{C}=60^o\)(4)
- Ta có : \(\widehat{B\text{AF}}+\widehat{ABE}=180^0\)(Trong cùng phía,BC//AD)
\(\widehat{ABE}=180^0-\widehat{B\text{AF}}\)
\(\widehat{ABE}=180^o-60^o=120^o\)
Mà ABEF là hình thoi
=> \(\widehat{B_1}=\widehat{\widehat{\frac{ABE}{2}}=\frac{120^o}{2}=60^o}\)(5)
Từ (4) và (5) => \(\widehat{C}=\widehat{B_1}\)(6)
Từ (3) và (6)
=> BCDF là hình thang cân
c) Vì ABCD là hình bình hành(gt)
Nên AB//CD và AB=CD
Mà M thuộc AB và AB=BM(M đối xứng với A qua B)
=> B là trung điểm của AB
Nên BM//CD và BM=CD
=> BMCD là hình bình hành (7)
- Xét \(\Delta ABF\)có ;
AB=AF(cmt)
=> \(\Delta ABF\)cân tại A
Mà \(\widehat{B\text{AF}}=60^o\)(gt)
Nên \(\Delta ABF\)đều
=> AB=BF=AF
- Xét \(\Delta ABD\)có:
BF là đường trung tuyến ứng với AD (FA=FD)
\(BF=\frac{1}{2}AD\)(BF=FA mà \(FA=\frac{1}{2}AD\))
Nên \(\Delta ABD\)vuông tại B
=> \(\widehat{MBD}=90^0\)(8)
Từ (7) và (8) =>BMCD là hình chữ nhật
Mà E là trung điểm của BC(gt)
Nên E là trung điểm của MD
Hay E,M,D thẳng hàng
Câu hỏi của Yaden Yuki - Toán lớp 8 - Học toán với OnlineMath Em tham khảo bài làm ở link này nhé!
Kẻ MH (H thuộc BC) song song AB cắt EC tại I. Ta có ngay H là trung điểm BC. Do đó I là trung điểm EC. Suy ra tam giác MIE = tam giác MIC. Suy ra góc EMI=CMI. Và AEM=EMI (so le trong) (1)
Lại có tam giác DMC cân tại D nên DMC=DCM, và DCM=CMI (so le trong) (2).
Từ (1) và (2), suy ra: EMD = EMI+CMI+DMC= 3AEM.
Bài 22 :
Vì ABCD là hình bình hành
=> AB = DC
Mà M là trung điểm AB
=> AM = MB
Mà N là trung điểm DC
=> DN = NC
=> AM = DN
Mà AB//DC
=> DN//AM
=> AMND là hình bình hành
Chứng minh tương tự ta có : MBCN là hình bình hành