K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 6 2019

a)

{BC=AD=2AB=2AE=2FDBC=2BE=2EC{BC=AD=2AB=2AE=2FDBC=2BE=2EC⇒AB=BE=EC=CD=FD=AF⇒AB=BE=EC=CD=FD=AF

tứ giác ECDF có: {FD//ECFD=EC{FD//ECFD=EC ⇒⇒ tứ giác ECDF là hình bình hành.

b)

tam giác DEC có: {DC=ECˆA=ˆC=60o{DC=ECA^=C^=60o⇒⇒tam giác DEC là tam giác đều.

⇒ˆDCE=ˆEDC=ˆDEC=60o⇒DCE^=EDC^=DEC^=60o

vì AD//BC nên ˆADC+ˆDCE=180o⇒ˆADC=1200ADC^+DCE^=180o⇒ADC^=1200

mà ˆADC=ˆADE+ˆEDCADC^=ADE^+EDC^

⇒ˆADE=60o⇒ADE^=60o

đồng thời ˆBAC=60oBAC^=60o

nên ˆADE=ˆBACADE^=BAC^

mặt khác: BE//AD

nên tứ giác ABED là hình thang cân.

c) c/m tương tự câu a, ta có: tứ giác ABEF là hình bình hành.

⇒⇒AB//FE ⇒ˆAEF=ˆEAB⇒AEF^=EAB^(1)

tam giác AFE có AF=FE nên tam giác AFE là tam giác cân

⇒ˆFAE=ˆFEA⇒FAE^=FEA^(2)

từ (1) và (2) ⇒ˆBAE=ˆEAF=ˆFEA=60o2=30o⇒BAE^=EAF^=FEA^=60o2=30o

tam giác FED có: {FD=DC=DEˆFDE=60o{FD=DC=DEFDE^=60o

do đó tam giác FED là tam giác đều.

⇒ˆFDE=ˆDEF=ˆEFD=180o3=60o⇒FDE^=DEF^=EFD^=180o3=60o

ta có: ˆAED=ˆAEF+ˆFED=30o+600=900

a) từ me vuông góc fc ab vuông góc fc=> me song song ab
=> mn song song ab => mn song song dc (1)
mà ab song song dc (do abcd là hbh)
từ ad ss bc (do .....)
=> md sscn (2) => ma ss bn (5)
từ (1)(2) => mndc là hbh (..) (3)
từ ab =2ad => ab=am=mdmà ab =dc (..) => md=dc (4)_
từ (3)(4) => mndc là hình thoi (...)
b) từ ne ss ab (cmt)
=> ne ss bf
mà nb = nc => fe=ec => e là tđ cf
c) từ abcd là hbh => a = dcb =60
từ mn ss ab và (5) => abnm là hbh (..)
ta có : mcd= 60\ 2 = 30
mà dcf + mcf +mcd
90=30 + mcf
mcf = 60 (6)
trong tam giác mfc có me là đcao đồng thời là đường tt
=> tam giác mfc cân tại M (7)
từ (6)(7) => mfc đều
d)từ fmc đều => fm=fc=> f thuộc trung trực mc
từ mn =nc => n thuộc trung trực mc
từ dm =dc => d thuộc trung trực mc

từ 3 ý trên => f,n,d thẳng hàng
(nếu đúng mình xin 1 tích nha :>> )

Giải thích các bước giải:

Ta có tứ giác ABCD là hbh

=> AD=BC; AD//BC

Mà M và N là trung điểm của AD và BC

=> MD=NC

Xét tứ giác MNCD có ;

MD//NC

MD=NC

=> Tứ giác MNCD là hbh

Mà MD=CD=AD/2

=> Tứ giác MNCD là hình thoi

b) Ta có tứ giác MNCD là hình thoi

=> CD//MN

Xét ΔBFC có: EN//BF

N là trung điểm của BC

=> EN là đườngtrung bình của tam giác BFC

=> E là trung điểm của CF

c) Ta có tứ giác MNCD là hình thoi

=> CM là tia phân giác của gốc BCD

=> Góc BCA=Góc BCD/2=60/2=30

Xét tam giác BFC có NE//BF

                                 NE⊥FC

=> BF⊥FC

=> Góc BCF=90- góc FBC=90-góc BAD=30

=> Góc FCM=Góc FCB+ góc BCM=60

Xét tam giác MCF có ME vừa là đường cao vừa là trung tuyến

=> ΔMCF cân tại M

Mà góc MCF=60

=>ΔMCF đều

d) Ta có : FM=FC( do ΔMCF đều) => F∈ trung trực của MC

DM=DC(=AD/2) =>D∈trung trực của MC

Có NC=NM=> N∈trung trực của MC

=> F;N;D cùng thuộc trung trực của MC

=> F;N;D thẳng hàng

image

31 tháng 10 2022

a: Xét tứ giác ABEF có

BE//AF

BE=AF

BE=BA

Do đó: ABEF là hình thoi

b: Xét ΔBIE có BI=BE

nên ΔBIE cân tại B

mà góc IBE=60 độ

nên ΔBIE đều

=>góc I=60 độ

Xét tứ giác AFEI có

EF//AI

góc I=góc A

Do đó AFEI là hình thang cân

c: Xét ΔBAD có

BF là đường trung tuyến

BF=AD/2

Do đó: ΔBAD vuông tại B

=>DB vuông góc với BI

Xét tứ giác BICD có

BI//CD

BI=CD

Do đó: BICD là hình bình hành

mà DB vuông góc với BI

nên BICD là hình chữ nhật

d: Xét ΔAED có

EF la trung tuyến

FE=DA/2

Do đó: ΔAED vuông tại E

=>góc AED=90 độ

9 tháng 10 2017

1.

a) D, \(\widehat{D}\)= 60o

b) B, Hình thang cân, hình thoi, hình vuông

14 tháng 8 2017

Bai 1: 

Ta co: BD la duong cheo vua la duong phan giac ( T/c cua duong cheo trong hinh thoi )

Thay co goc B = 120 cm, suy ra goc ABC = 60 do

Tam giac ABC la tam giac deu

AB = AD = BD = 5

24 tháng 10 2021

Chọn B

4 tháng 12 2016

ko ai trả lời đâu bạn à

trang này phế lắmucche

4 tháng 11 2017

a)Ta có góc A=C=60° và B=D=120° và AB=CD=1/2BC (tính chất hình bh) 
E là trung điểm BC => BE=EC=AB=1/2BC 
F là trung điểm AD => AF=DF=1/2AD=1/2BC 
Ta có EF=CD và EC=FD (tính chất đoạn chắn) 
=> ECDF là hình bình hành 
Và EC=DC (cùng bằng 1/2BC) 
Hình bh ECDF có 2 cạnh kề bằng nhau => ECDF là hình thoi 
b) Ta có BE//AD => ABED là hình thang 
xét tam giác CED có EC=DC và có góc C=60° 
=>CED là tam giác đều 
=>EDC=60° 
ta có BDE=D-ECD (đây là ký hiệu góc) 
=>BDE=60° 
Mà ta biết góc A=60° 
Hình thang ABED có 2 góc đáy bằng nhau => là hình thang cân 
d) 90độ, vì hình ABEF là hình thoi, nên AE là phân giác góc BEF, mà góc này 60 đô, nên AEF là 30 đô, mặt khác FED là 60 đô, đã chứng minh ở câu b) nên AED = 30+60 = 90 đô.

4 tháng 11 2017

câu b đâu có góc FED =90 độ đâu