K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 4 2016

  +  +   + 

ABCD là hình bình hành nên

 +  =  (quy tắc hình bình hành của tổng)

=>   +  + =    + =2

1 tháng 4 2017

Giải bài 2 trang 12 sgk Hình học 10 | Để học tốt Toán 10

30 tháng 3 2017

Ta chứng minh hai mệnh đề:

- Khi = thì ABCD là hình bình hành.

Thật vậy, theo định nghĩa của vec tơ bằng nhau thì:

= =

cùng hướng.

cùng hướng => cùng phương, suy ra giá của chúng song song với nhau, hay AB // DC (1)

Ta lại có = => AB = DC (2)

Từ (1) và (2), theo dấu hiệu nhận biết hình bình hành, tứ giác ABCD có một cặp cạnh song song và bằng nhau nên nó là hình bình hành.

- Khi ABCD là hình bình hành thì =

Khi ABCD là hình bình hành thì AB // CD. Dễ thấy, từ đây ta suy ra hai vec tơ cùng hướng (3)

Mặt khác AB = CD => = (4)

Từ (3) và (4) suy ra = .

NM
11 tháng 1 2021

ta có \(\hept{\begin{cases}\overrightarrow{AC}=\overrightarrow{AB}+\overrightarrow{BC}\Rightarrow AC^2=AB^2+BC^2+2\overrightarrow{AB}.\overrightarrow{BC}\\\overrightarrow{BD}=\overrightarrow{BA}+\overrightarrow{AD}\Rightarrow BD^2=BA^2+AD^2+2\overrightarrow{BA}.\overrightarrow{AD}\end{cases}}\)

mà \(\overrightarrow{AB}.\overrightarrow{BC}+\overrightarrow{BA}.\overrightarrow{AD}=\overrightarrow{AB}.\overrightarrow{BC}+\overrightarrow{AB}.\overrightarrow{AD}=0\)

Do đó \(AC^2+BD^2=2AB^2+2BC^2\Leftrightarrow m^2+n^2=2\left(a^2+b^2\right)\)

30 tháng 3 2017

\(\overrightarrow{AB}+\overrightarrow{AC}+\overrightarrow{AD}=\overrightarrow{AB}+\overrightarrow{AD}+\overrightarrow{AC}\)

ABCD là hình bình hành nên

\(\overrightarrow{AB}+\overrightarrow{AD}=\overrightarrow{AC}\) (quy tắc hình bình hành của tổng)

\(\Rightarrow\overrightarrow{AB}+\overrightarrow{AC}+\overrightarrow{AD}=\overrightarrow{AC}+\overrightarrow{AC}=2\overrightarrow{AC}\)

30 tháng 3 2017

+ + = + +

ABCD là hình bình hành nên

+ = (quy tắc hình bình hành của tổng)

=> + + = + =2

30 tháng 3 2017

Áp dụng định lí về đường trung tuyến:

OA2 = - (1)

Thay OA = , AB = a, AD = BC = b và BD = m vào (1) ta có:
\(\left(\dfrac{n}{2}\right)^2=\dfrac{b^2+a^2}{2}-\dfrac{m^2}{4}\)
\(\Leftrightarrow\dfrac{n^2}{4}+\dfrac{m^2}{4}=\dfrac{a^2+b^2}{2}\)
\(\Leftrightarrow m^2+n^2=2\left(a^2+b^2\right)\)

A B C D a b n m

 

12 tháng 5 2017

Do là giao điểm của hai đường chéo hình bình hành nên:
\(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}+\overrightarrow{MD}\)\(=\overrightarrow{MO}+\overrightarrow{OA}+\overrightarrow{MO}+\overrightarrow{OB}+\overrightarrow{MO}+\overrightarrow{OC}+\overrightarrow{MO}+\overrightarrow{OD}\)
\(=4\overrightarrow{MO}+\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OD}\)
\(=4\overrightarrow{MO}\) (ĐPCM).

12 tháng 5 2017

A B C D O
\(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OD}=\left(\overrightarrow{OA}+\overrightarrow{OC}\right)+\left(\overrightarrow{OB}+\overrightarrow{OC}\right)\)
\(=\overrightarrow{0}+\overrightarrow{0}\)(Theo tính chất hình bình hành).
\(=\overrightarrow{0}\) .

10 tháng 12 2017

Giải bài 1 trang 17 sgk Hình học 10 | Để học tốt Toán 10

ABCD là hình bình hành

Giải bài 1 trang 17 sgk Hình học 10 | Để học tốt Toán 10

13 tháng 4 2016

Áp dụng định lí về đường trung tuyến:

OA – 

Thay OA =  , AB = a

AD = BC = b và BD = m => dpcm