Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 10:
góc A=180-130=50 độ
góc B=(180+50)/2=230/2=115 độ
góc C=180-115=65 độ
\(\widehat{A}=\widehat{C}=135^0\)
\(\widehat{B}=\widehat{D}=45^0\)
Xét Δ vuông ADC ta có :
\(AD=\dfrac{CD}{2}\)
mà AD là cạnh góc vuông, CD là cạnh huyền
⇒ Δ ADC là tam giác nửa đều
\(\Rightarrow\left\{{}\begin{matrix}\widehat{ADC}=60^O\\\widehat{DCA}=30^O\end{matrix}\right.\)
\(\Rightarrow\widehat{ADC}=\widehat{ABC}=60^O\) (hai góc đối hình bình hành) (1)
Ta lại có : \(\widehat{BAC}=\widehat{DCA}\) (so le trong)
mà \(\widehat{DCA}=30^O\)
\(\Rightarrow\widehat{BAC}=30^2\)
mà \(\widehat{DAB}=\widehat{DAC}+\widehat{BAC}\)
\(\Rightarrow\widehat{DAB}=90^o+30^o=120^o\)
\(\Rightarrow\widehat{BCD}=\widehat{DAB}=120^o\) (hai góc đối hình bình hành) (2)
(1), (2)⇒ điều phải tính toán theo đề
a. Xét tam giác HCD cóHN=DN;HM=CM
=> MN là đường trung bình của tam giác HCD => MN//DC
=> DNMC là hình thang
b. Ta có MN là đường trung bình của tam giác HCD => MN=1/2CD
Mà AB=1/2CD => AB =MN
Do MN//CD và AB//CD => AB//MN
Xét tứ giác ABMN có AB//MN; AB=MN
=> ABMN là hình bình hành
c.Ta có MN//CD mà CD vg AD
=> MN vg AD
Xét tam giác ADM có DH và MN là 2 đường cao của tam giác
Mà chúng cắt nhau tại N nên N là trực tâm của tam giác ADM
=> AN là đường cao của tam giác ADM
=> AN vg DM
Do ABMN là hình bình hành nên AN//BM
=> BM vg DM => BMD =90*