K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 5 2019

Trong ΔMNL có:

LP ⊥ MN nên LP là đường cao của ΔMNL.

MQ ⊥ NL nên MQ là đường cao của ΔMNL.

Mà LP, MQ cắt nhau tại điểm S

Nên: theo tính chất ba đường cao của một tam giác, S là trực tâm của tam giác.

⇒ đường thẳng SN là đường cao của ΔMNL.

hay SN ⊥ ML.

21 tháng 11 2017

nh 98): Xét ΔABC và ΔABD có:

Giải bài 34 trang 123 Toán 7 Tập 1 | Giải bài tập Toán 7

Nên ΔABC = ΔABD (g.c.g)

- Hình 99): Ta có:

Giải bài 34 trang 123 Toán 7 Tập 1 | Giải bài tập Toán 7

Xét ΔABD và ΔACE có:

Giải bài 34 trang 123 Toán 7 Tập 1 | Giải bài tập Toán 7

Nên ΔABD = ΔACE ( g.c.g)

Xét ΔADC và ΔAEB có:

Giải bài 34 trang 123 Toán 7 Tập 1 | Giải bài tập Toán 7

    DC = EB (Vì DC = DB + BC ; EB = EC + BC mà DB = EC)

Nên ΔADC = ΔAEB (g.c.g)

21 tháng 11 2017

Xem hình 98)

∆ABC và ∆ABD có: 

ˆA1A1^=ˆA2A2^(gt)

AB là cạnh chung.

ˆB1B1^=ˆB2B2^(gt)

Nên ∆ABC=∆ABD(g.c.g)

Xem hình 99)

Ta có:

ˆB1B1^+ˆB2B2^=180(Hai góc kề bù).

ˆC1C1^+ ˆC2C2^=180(Hai góc kề bù)

Mà ˆB2B2^=ˆC2C2^(gt)

Nên ˆB1B1^=ˆC1C1^

* ∆ABD và ∆ACE có:

ˆB1B1^=ˆC1C1^(cmt)

BD=EC(gt)

ˆDD^ = ˆEE^(gt)

Nên ∆ABD=∆ACE(g.c.g)

* ∆ADC và ∆AEB có:

ˆDD^=ˆEE^(gt)

ˆC2C2^=ˆB2B2^(gt)

DC=EB

Nên ∆ADC=∆AEB(g.c.g)

19 tháng 4 2017

a) Từ hình vẽ ta có: LP ⊥ MN; MQ ⊥ LN

ΔMNL có S là giao điểm của hai đường cao LP và MQ nên S chính là trực tâm của tam giác (định lí ba đường cao).

=> NS cũng là đường cao trong tam giác hay NS ⊥ LM (đpcm).

b) ΔNMQ vuông tại Q có góc LNP = 50o nên góc QMN = 40o

ΔMPS vuông tại P có góc QMP = 40o nên góc MSP = 50o

Vì hai góc MSP và PSQ là hai góc kề bù nên suy ra:

góc PSQ = 180o - 50o = 130o.

19 tháng 4 2017

Hướng dẫn:

a) Trong ∆NML có :

LP ⊥ MN nên LP là đường cao

MQ ⊥ NL nên MQ là đường cao

mà PL ∩ MQ = {S}

suy ra S là trực tâm của tam giác nên đường thằng SN chứa đường cao từ N hay

SN ⊥ ML

b) ∆NMQ vuông tại Q có ˆLNPLNP^ =500 nên ˆQMNQMN^ =400

∆MPS vuông tại Q có ˆQMPQMP^ =400 nên ˆMSPMSP^ =500

Suy ra ˆPSQPSQ^ =1300(kề bù)

18 tháng 4 2019

Giải bài 32 trang 70 SGK Toán 7 Tập 2 | Giải toán lớp 7

Gọi M là giao điểm của hai tia phân giác của hai góc ngoài B và C của ∆ABC.

Kẻ MH ⊥ AB; MI ⊥ BC; MK ⊥ AC (như hình vẽ)

(H ∈ tia AB, I ∈ BC, K ∈ tia AC)

Theo định lí 1: Điểm nằm trên tia phân giác của một góc thì cách đều hai cạnh của góc đó.

Ta có: MH = MI (Vì M thuộc phân giác của góc B ngoài )

MI = MK ( Vì M thuộc phân giác của góc C ngoài )

Suy ra: MH = MK (cùng bằng MI)

Dựa vào định lí 2: Điểm nằm bên trong góc và cách đều hai cạnh của góc thì nằm trên tia phân giác của góc đó.

⇒ M thuộc phân giác của góc BAC (đpcm).

5 tháng 7 2017

Lời giải:

a) √36 = 6

b) -√16 = -4

Giải bài 83 trang 41 Toán 7 Tập 1 | Giải bài tập Toán 7

26 tháng 2 2021
A)6;B)-4;C)3/5;D)3;E)3
21 tháng 9 2021

Đáp án :

\(-3\notinℕ\)

\(-3\in Z\)

\(-3\in Q\)

\(\frac{-2}{3}\notin Z\)

\(\frac{-2}{3}\in Q\)

\(N\subset Z\subset Q\)

tả lời minh ko biết đánh kí hiệu nên là vậy nha 

-3 ko thuộc N / -3 thuộc  Z    /  -3 thuộc Q 

-2/3 ko thuộc Q  /   -2/3 thuộc Q  /   N là tập hợp con của Z mà Z lại là tập hợp con của Q

chúc bn có 1 năm học mới vui vẻ

12 tháng 10 2018

1) Tính góc ∠E1

Ta có d’//d” (gt)

⇒ ∠C = ∠E1 ( So le trong)

⇒ ∠E1 = 600 vì ∠C = 600

2) Tính ∠G3

Ta có d’//d”

⇒ ∠G2 = ∠D (Đồng vị)

⇒ ∠G1 = 1100

3) Tính ∠G3

Vì ∠G2 + ∠G3 = 1800 (kề bù)

⇒ ∠G3 = 700

4) Tính ∠D4

∠D4 = ∠D (Đối đỉnh)

⇒  ∠D4 = 1100

5) Tính ∠A5

Ta có d//d”

⇒ ∠A5 = ∠ E1 (Đồng vị)

⇒ ∠A5 = 600

6) Tính ∠B6

Ta có d//d”

⇒ ∠B6 = ∠G3 (Đồng vị)

⇒ ∠B6 = 700

12 tháng 5 2017

Gọi I là giao điểm của AE và BC

Dễ thấy MA = MB = MC = ME

=> ∆AME cân

=> góc MAE = góc MEA

=> ∆ AMC cân

=> góc MAC = góc MCA

Mà ta có:

góc MEI + góc MIE = 90°

=> góc MAI + góc MIE = 90°

=> góc MAI + góc BIA = 90°

=> góc MAI + góc IAC + góc ACI = 90°

=> góc MAI + góc MAI + góc MAC + góc ACM = 90°

=> 2góc MAI + 2góc MAC = 90°

=> 2góc IAC = 90°

=> góc IAC = 45°

=> AE là phân giác của góc BAC

12 tháng 5 2017

Xét tam giác BME và tam giác CME có:

EM: cạnh chung.

MB = MC (gt)

góc BME = góc CME = 90 độ

suy ra: tam giác BME = tam giác CME ( cgv-cgv)

Suy ra : EB=EC.

Nên: E thuộc tia phân giác của góc A.

Vậy: AE là TPG của góc BAC