K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 9 2023

a) Do EI là tia phân giác của \(\widehat{DEF}\Rightarrow\widehat{DEF}=\widehat{FEI}\)

Xét \(\Delta EID\) và \(\Delta EIF\) có:

ED = EF (theo giả thiết)

\(\widehat{DEI}=\widehat{FEI}\) (chứng minh trên)

EI chung

\(\Rightarrow\Delta EID=\Delta EIF\left(c.g.c\right)\)

b) Do \(\Delta EID=\Delta EIF\Rightarrow ID=IF\) (2 cạnh tương ứng)

\(\Rightarrow\Delta DIF\) cân tại I

HQ
Hà Quang Minh
Giáo viên
19 tháng 9 2023

a) Tia BO là tia phân giác của \(\widehat {ABC}\) vì tia BO nằm giữa 2 tia BA và BC, tạo với 2 cạnh BA và BC 2 góc bằng nhau.

Tia DO là tia phân giác của \(\widehat {ADC}\) vì tia DO nằm giữa 2 tia DA và DC, tạo với 2 cạnh DA và DC 2 góc bằng nhau

b) Vì BO là tia phân giác của \(\widehat {ABC}\) nên \(\widehat {ABO} = \widehat {CBO} = \frac{1}{2}.\widehat {ABC} = \frac{1}{2}.100^\circ  = 50^\circ \)

Vì DO là tia phân giác của \(\widehat {ADC}\)nên \(\widehat {ADO} = \widehat {CDO} = \frac{1}{2}.\widehat {ADC} = \frac{1}{2}.60^\circ  = 30^\circ \)

Vậy \(\widehat {ABO} = 50^\circ ;\widehat {ADO} = 30^\circ \)

HQ
Hà Quang Minh
Giáo viên
18 tháng 9 2023

Xét 2 tam giác ABC và MNP có:

AB=MN (gt)

\(\widehat {BAC} = \widehat {NMP}\) (gt)

AC=MP (gt)

Vậy \(\Delta ABC = \Delta MNP\)(c.g.c)

HQ
Hà Quang Minh
Giáo viên
19 tháng 9 2023

\(\widehat {{O_1}}\) có cạnh Ox và Ot, đỉnh O

\(\widehat {{O_3}}\) có cạnh Oy và Oz, đỉnh O

Ta có: \(\widehat {{O_1}}\) và \(\widehat {{O_3}}\) có mỗi cạnh của góc này là cạnh đối của một cạnh của góc kia.

\(\widehat {{O_1}}\) và \(\widehat {{O_3}}\) có chung đỉnh

30 tháng 10 2023

a) Ta có:

∠mOx + ∠nOx = 180⁰ (kề bù)

⇒ ∠nOx = 180⁰ - ∠mOx

= 180⁰ - 30⁰

= 150⁰

Do Ot là tia phân giác của ∠nOx

⇒ ∠nOt = ∠nOx : 2 

= 150⁰ : 2

= 75⁰

b) Do a // b

⇒ ∠B₄ = ∠A₄ = 65⁰ (đồng vị)

Ta có:

∠B₃ + ∠B₄ = 180⁰ (kề bù)

⇒ ∠B₃ = 180⁰ - ∠B₄

= 180⁰ - 65⁰

= 115⁰

5 tháng 11 2023

Tính số đo góc �3^B3.

Hướng dẫn giải:

a) ���^+���^=180∘mOx+xOn=180

Vậy ���^=180∘−30∘=150∘nOx=18030=150.

��Ot là tia phân giác của ���^nOx, suy ra ���^=12.���^=75∘nOt=21.nOx=75.

b) a // b suy ra �4^=�2^=65∘A4=B2=65 (hai góc so le trong).

Mặt khác, ta có �2^+�3^=180∘B2+B3=180

Suy ra �3^=180∘−�2^=115∘B3=180B2=115.

22 tháng 12 2022

Xét ∆ABC và ∆DBC có: 

AB = BD 

Góc ABC = góc CBD 

Góc BAC = góc BDC 

=> ∆ABC = ∆DBC

22 tháng 12 2022

xét ΔABC và ΔDBC, ta có :

góc A = góc D (gt)

BC là cạnh chung

góc ABC = góc DBC

=> ΔABC = ΔDBC, (g.c.g)

21 tháng 2 2023

a, Tam giác ABC cân tại A nên  \(\widehat{B}\) = \(\widehat{C}\)

⇒ \(\widehat{ABM}\) = \(\widehat{ACN}\) (1)

AB = AC (2)

\(\widehat{BAM}\) = \(\widehat{CAN}\) = 900 (3)

Kết hợp (1); (2) ; (3) ta có △BAM = △CAN (g-c-g)

b, BM = CN  ( Δ BAM =  ΔCAN)

   BM = BN + MN = MN + MC 

   ⇒ BN  = CM 

c, \(\widehat{BAN}\) + \(\widehat{NAC}\) = \(\widehat{BAC}\) =1200

    \(\Rightarrow\) \(\widehat{BAN}\) = 1200 - \(\widehat{NAC}\) = 1200 - 900 = 300

 \(\widehat{ABN}\) = (1800 - 1200) : 2  = 300

⇒ \(\widehat{BAN}\) = \(\widehat{ABN}\) = 300 ⇒ △ANB cân tại N 

loading...

 

 

 

25 tháng 2 2023

a) Xét hai tam giác BADBAD và BFDBFD có:

     ABD^=FBD^ABD

=FBD

(vì BDBD là tia phan giác của góc BB);

     AB=BFAB=BF (ΔABFΔABF cân tại BB);

     BDBD là cạnh chung;

Vậy ΔBAD=ΔBFDΔBAD=ΔBFD (c.g.c).

b) ΔBAD =Δ BFDΔBAD =Δ BFD suy ra BAD^=BFD^=100∘BAD

=BFD

=100 (hai góc tương ứng).

Suy ra DFE^=180∘−BFD^=80∘DFE

=180BFD

=80. (1)

Tam giác ABCABC cân tại AA nên B^=C^=180∘−100∘2=40∘B

=C

=2180100=40

Suy ra DBE^=20∘DBE

=20.

Tương tự, tam giác BDEBDE cân tại BB nên BED^=180∘−20∘2=80∘BED

=218020=80. (2)

Từ (1) và (2) suy ra ΔDEFΔDEF cân tại DD.

 

HQ
Hà Quang Minh
Giáo viên
18 tháng 9 2023

Xét tam giác MNP có:

\(\begin{array}{l}\widehat M + \widehat N + \widehat P = {180^o}\\ \Rightarrow \widehat M + {50^o} + {70^o} = {180^o}\\ \Rightarrow \widehat M = {60^o}\end{array}\)

Xét 2 tam giác ABC và MNP có:

AB=MN (gt)

\(\widehat {BAC} = \widehat {NMP} (=60^0)\)

AC=MP (gt)

Vậy \(\Delta ABC = \Delta MNP\)(c.g.c)

HQ
Hà Quang Minh
Giáo viên
18 tháng 9 2023

Đoạn thẳng đơn vị được chia thành 6 phần bằng nhau, lấy một đoạn làm đơn vị mới, đơn vị mới bằng \(\frac{1}{6}\) đơn vị cũ.

Điểm A nằm bên phải gốc O và cách O một đoạn bằng 10 đơn vị mới. Do đó điểm A biểu diễn số hữu tỉ \(\frac{{10}}{6} = \frac{5}{3}\)

Điểm B nằm bên trái gốc O và cách O một đoạn bằng 5 đơn vị mới. Do đó điểm B biểu diễn số hữu tỉ \(\frac{{ - 5}}{6}\)

Điểm C nằm bên trái gốc O và cách O một đoạn bằng 13 đơn vị mới. Do đó điểm C biểu diễn số hữu tỉ \(\frac{{ - 13}}{6}\)

18 tháng 9 2023

Em thấy bạn Vuông nói đúng

Để chứng minh điều này, ta có thể chỉ ra trường hợp 2 góc bằng nhau nhưng không đối đỉnh.

Ví dụ:

\(\widehat {{O_1}} = \widehat {{O_2}}\) nhưng hai góc này không đối đỉnh