Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1a. Vì AB là đường trung trực của DH nên AD=AH.
vì AC là đường trung trực của HE nên AH=AE.
do đó AD=AE(=AH) => tam giác ADE cân tại A.
A B C D K M Q
a) b) cậu biết làm rồi nhé
c) Vì K là trung điểm cạnh BC ( gt )
\(\Rightarrow DK\)là trung tuyến cạnh BC.
Vì A là trung điểm của BD
\(\Rightarrow AC\)là trung tuyến cạnh BD
mà DK cắt AC tại M
\(\Rightarrow M\)là trọng tâm của tam giác BCD.
\(\Rightarrow MC=\frac{2}{3}AC\left(tc\right)\)
( BẠN TỰ THAY VÀO NHA )
d) Vì tam giác BCD cân ( cmt )
\(\Rightarrow BC=DC\left(đn\right)\)
Mà AC là trung tuyến của tam giác BCD ( cmt )
\(\Rightarrow AC\)cũng là đường phân giác của góc BCD .( tc)
\(\Rightarrow\widehat{BCA}=\widehat{DCA}=\frac{1}{2}\widehat{BCD}\)
Xét tam giác BCM và tam giác DCM có:
\(\hept{\begin{cases}CMchung\\BC=CD\left(cmt\right)\\\widehat{BCA}=\widehat{DCA}\left(cmt\right)\end{cases}\Rightarrow\Delta BCM=\Delta DCM\left(c-g-c\right)}\)
\(\Rightarrow\hept{\begin{cases}BM=DM\left(2canht.ung\right)\left(1\right)\\\widehat{CBM}=\widehat{CDM}\left(2goct.ung\right)\end{cases}}\)
Xét tam giác BMK và tam giác DMQ có:
\(\hept{\begin{cases}BM=DM\left(cmt\right)\\\widehat{CDM}=\widehat{CBM}\left(cmt\right)\\\widehat{BMK}=\widehat{QMD}\left(2gocdoidinh\right)\end{cases}\Rightarrow\Delta BMK=\Delta DMQ\left(g-c-g\right)}\)
\(\Rightarrow MK=MQ\left(2canht.ung\right)\left(2\right)\)
Vì M là trọng tâm của tam giác BCD (cmt) (4)
mà DK là trung tuyến của tam giác BCD (cmt)
\(\Rightarrow DM=2.MK\left(tc\right)\left(3\right)\)
Từ (1), (2) và (3) \(\Rightarrow BM=2.MQ\)
\(\Rightarrow BQ\)là trung tuyến của tam giác BCD (5)
Từ (4) và (5) \(\Rightarrow B,M,Q\)thẳng hàng
a: Xét ΔABC và ΔABD có
AB chung
BC=BD
AC=AD
Do đó: ΔABC=ΔABD
b: Xét ΔACD và ΔBCD có
AC=BC
CD chung
AD=BD
Do đó:ΔACD=ΔBCD