Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
1/ĐKXĐ: \(x^2+4y+8\ge0\)
PT (1) \(\Leftrightarrow\left(x-2\right)\left(x-y+3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=2\\x=y-3\end{cases}}\)
+) Với x = 2, thay vào PT (2): \(4\sqrt{y^2+4}=y\sqrt{4y+12}\) (\(\text{ĐKXĐ:}y\ge-3\))
\(\Leftrightarrow\hept{\begin{cases}y\ge0\\16\left(y^2+4\right)=y^2\left(4y+12\right)\end{cases}}\Leftrightarrow\hept{\begin{cases}y\ge0\\4\left(y^3-y^2-16\right)=0\end{cases}}\)
\(\Rightarrow y=\frac{1}{3}\left(1+\sqrt[3]{217-12\sqrt{327}}+\sqrt[3]{217+12\sqrt{327}}\right)\)(nghiệm khổng lồ quá chả biết tính kiểu gì nên em nêu đáp án thôi:v)
Vậy...
+) Với x = y - 3, thay vào PT (2):
\(\left(y-1\right)\sqrt{y^2+4}=y\sqrt{y^2-2y+17}\)
\(\Rightarrow\left(y-1\right)^2\left(y^2+4\right)=y^2\left(y^2-2y+17\right)\)(Biến đổi hệ quả nên ta dùng dấu suy ra)
\(\Leftrightarrow4\left(1-3y\right)\left(y+1\right)=0\Leftrightarrow\orbr{\begin{cases}y=\frac{1}{3}\\y=-1\end{cases}}\)
Thử lại ta thấy chỉ có y = - 1 \(\Rightarrow x=y-3=-4\)
![](https://rs.olm.vn/images/avt/0.png?1311)
1. Xét PT 2. Xét \(x^2y=0\)=>......
Xét \(x^2y\ne0\)Chia 2 vế pt 1 cho x^2y^2, chia 2 vế pt 2 cho x^2y rồi đặt 1/x=a, 1/y=b
=>\(\hept{\begin{cases}a^2+b^2=2\\a^2+8+3ab=5b^2+7a\end{cases}}\)=>\(a^2+a^2+b^2+6+3ab=5b^2=7a.\)Phân tích thành nhân tử
![](https://rs.olm.vn/images/avt/0.png?1311)
\(1,\hept{\begin{cases}x+2y=5\\3x-y=1\end{cases}\Leftrightarrow}\hept{\begin{cases}3x+6y=15\\3x-y=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\y=2\end{cases}}\)
\(2,\hept{\begin{cases}9y-2x=10\\4x-2y=12\end{cases}\Leftrightarrow}\hept{\begin{cases}9y-2x=10\\2x-y=6\end{cases}\Leftrightarrow}\hept{\begin{cases}x=4\\y=2\end{cases}}\)
\(3,\hept{\begin{cases}\sqrt{4x-y}=a\\8x-2y=2a^2\end{cases}\Leftrightarrow\hept{\begin{cases}8x-2y=2a^2\\8x-2y=2a^2\end{cases}}\Leftrightarrow khong}cogiatri\)
3)\(\hept{\begin{cases}8x-2y=2a^2\\8x-2y=2a^2\end{cases}}\Leftrightarrow8x-2y=2a^2\) có vô số nghiệm em nhé!
![](https://rs.olm.vn/images/avt/0.png?1311)
1/HPT\(\Leftrightarrow\hept{\begin{cases}x^2+y^2=6-\left(x+y\right)=3\\\left(x+y\right)^2=9\end{cases}}\Rightarrow2xy=\left(x+y\right)^2-\left(x^2+y^2\right)=9-3=6\Rightarrow xy=3\)
Kết hợp đề bài có được: \(\hept{\begin{cases}x+y=3\\xy=3\end{cases}}\). Dùng hệ thức Viet đảo là xong.
![](https://rs.olm.vn/images/avt/0.png?1311)
Ôi trời nhiều thía ? làm từng câu một ha !
a \(\hept{\begin{cases}\left(x+5\right)\left(y-2\right)=\left(x+2\right)\left(y-1\right)\\\left(x-4\right)\left(y+7\right)=\left(x-3\right)\left(y+4\right)\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}xy-2x+5y-10=xy-x+2y-2\\xy+7x-4y-28=xy+4x-3y-12\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}-x+3y=8\\3x-y=16\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}-3x+9y=24\\3x-y=16\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}-3x+9y=24\\3x-y-3x+9y=16+24\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}-3x+9y=24\\8y=40\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=7\\y=5\end{cases}}\)
b, ĐKXĐ \(x\ne\pm y\)
Đặt \(\frac{1}{x+y}=a\) và \(\frac{1}{x-y}=b\)(a và b khác 0)
Ta có hệ \(\hept{\begin{cases}a-2b=2\\5a-4b=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2a-4b=4\\5a-4b=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2a-4b=4\\5a-4b-2a+4b=3-4\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2a-4b=4\\3a=-1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=-\frac{1}{3}\\b=-\frac{7}{6}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\frac{1}{x+y}=-\frac{1}{3}\\\frac{1}{x-y}=-\frac{7}{6}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+y=-3\\x-y=-\frac{6}{7}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+y-x+y=-3+\frac{6}{7}\\x-y=-\frac{6}{7}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2y=-\frac{15}{7}\\x-y=-\frac{6}{7}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=-\frac{27}{14}\\y=-\frac{15}{14}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=2x-7\\x^2-2.x.\left(2x-7\right)=\left(7-2x\right).\left[9.\left(2x-7\right)+8x\right]\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=2x-7\\x^2-4x^2+14x=\left(7-2x\right).\left(26x-63\right)\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=2x-7\\-3x^2+14x=182x-441-52x^2+126x\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=2x-7\\49x^2-294x+441=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}y=2x-7\\49\left(x^2-6x+9\right)=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}y=2x-7\\\left(x-3\right)^2=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=3\\y=-1\end{cases}}\)
\(\hept{\begin{cases}x^2-2xy=-y\left(9y+8x\right)\\2x-y=7\end{cases}}\)(=) \(\hept{\begin{cases}x^2-2xy+9y^2+8xy=0\\2x-y=7\end{cases}}\)
(=)\(\hept{\begin{cases}x^2+6xy+9y^2-2xy+2xy=0\\2x-y=7\end{cases}}\)
(=)\(\hept{\begin{cases}\left(x+3y\right)^2=0\\2x-y=7\end{cases}}\) (=)\(\hept{\begin{cases}x+3y=0\\2x-y=7\end{cases}}\)(=)\(\hept{\begin{cases}2x+6y=0\left(1\right)\\2x-y=7\left(2\right)\end{cases}}\)
Trừ vế theo vế (2) cho (1) ta được :-7y=7 =>y=-1=>x=3. Vậy \(^{x^3+y^3^{ }=\left(-1\right)^3+3^3=26}\)