Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1,
\(A=1+a+\frac{1}{b}+\frac{a}{b}+1+b+\frac{1}{a}+\frac{b}{a}\)
\(\ge1+1+2\sqrt{\frac{a}{b}.\frac{b}{a}}+a+b+\frac{a+b}{ab}=4+a+b+\frac{4\left(a+b\right)}{\left(a+b\right)^2}=4+a+b+\frac{4}{a+b}\)
lại có \(\left(1+1\right)\left(a^2+b^2\right)\ge\left(a+b\right)^2\Rightarrow a+b\le\sqrt{2}\)
\(4+a+b+\frac{4}{a+b}=4+\left(a+b+\frac{2}{a+b}\right)+\frac{2}{a+b}\ge4+2\sqrt{2}+\sqrt{2}=4+3\sqrt{2}\)
\(\Rightarrow A\ge4+3\sqrt{2}\)
câu 2
ta có:\(\left(2b^2+a^2\right)\left(2+1\right)\ge\left(2b+a\right)^2\Rightarrow3c\ge a+2b\)
\(\frac{1}{a}+\frac{2}{b}=\frac{1}{a}+\frac{4}{2b}\ge\frac{9}{a+2b}\ge\frac{9}{3c}=\frac{3}{c}\left(Q.E.D\right)\)
\(A\ge3\left(a+b+c\right)+\frac{9}{a+b+c}=3.3+\frac{9}{3}=12\)
\(A_{min}=12\) khi \(a=b=c=1\)
Ta cần chứng minh: \(3a+\frac{1}{a}\ge2a+2\Leftrightarrow3a+\frac{1}{a}-4\ge2\left(a-1\right)\)
\(\Leftrightarrow\frac{3a^2-4a+1}{a}-2\left(a-1\right)\ge0\Leftrightarrow\left(a-1\right)\left(\frac{3a-1}{a}-2\right)\ge0\Leftrightarrow\frac{\left(a-1\right)^2}{a}\)(đúng)
Tương tự: \(3b+\frac{1}{b}\ge2b+2;3c+\frac{1}{c}\ge2c+2\)
Cộng theo vế: \(A\ge2\left(a+b+c\right)+6=12\)
Dấu bằng xảy ra khi a=b=c=1
Cho \(\hept{\begin{cases}a+b=1\\a,b>0\end{cases}}\)
Tìm MIN A=\(a^2+b^2+\frac{1}{a^2}+\frac{1}{b^2}\)
Vì a,b >0
Áp dụng bất đẳng thức Cauchy, ta có:
\(a^2+\frac{1}{a^2}\ge2\sqrt{a^2.\frac{1}{a^2}}\)
\(\ge2\)
\(b^2+\frac{1}{b^2}\ge2\sqrt{b^2.\frac{1}{b^2}}\)
\(\ge2\)
Cộng vế theo vế, ta được:
\(a^2+b^2+\frac{1}{a^2}+\frac{1}{b^2}\ge2+2\)
\(\Rightarrow A\ge4\)
Vậy MinA=4 \(\Leftrightarrow\orbr{\begin{cases}a^2=\frac{1}{a^2}\\b^2=\frac{1}{b^2}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}a=1\\b=1\end{cases}}\)
\(1,\hept{\begin{cases}10x^2+5y^2-2xy-38x-6y+41=0\left(1\right)\\3x^2-2y^2+5xy-17x-6y+20=0\left(2\right)\end{cases}}\)
Giải (1) : \(10x^2+5y^2-2xy-38x-6y+41=0\)
\(\Leftrightarrow10x^2-2x\left(y+19\right)+5y^2-6y+41=0\)
Coi pt trên là pt bậc 2 ẩn x
Có \(\Delta'=\left(y+19\right)^2-50y^2+60y-410\)
\(=-49y^2+98y-49\)
\(=-49\left(y-1\right)^2\)
pt có nghiệm \(\Leftrightarrow\Delta'\ge0\)
\(\Leftrightarrow-49\left(y-1\right)^2\ge0\)
\(\Leftrightarrow y=1\)
Thế vào pt (2) được x = 2
\(2,\)Đặt\(\left(a\sqrt{a};b\sqrt{b};c\sqrt{c}\right)\rightarrow\left(x;y;z\right)\left(x,y,z>0\right)\)
\(\Rightarrow xy+yz+zx=1\)
Khi đó \(P=\frac{x^4}{x^2+y^2}+\frac{y^4}{y^2+z^2}+\frac{z^4}{x^2+z^2}\)
Áp dụng bđt \(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\left(x;y;z>0\right)\left(Cauchy-engel-type_3\right)\)được
\(P\ge\frac{\left(x^2+y^2+z^2\right)^2}{2\left(x^2+y^2+z^2\right)}=\frac{x^2+y^2+z^2}{2}\)
Áp dụng bđt x2 + y2 + z2 > xy + yz + zx (tự chứng minh) ta được
\(P\ge\frac{x^2+y^2+z^2}{2}\ge\frac{xy+yz+zx}{2}=\frac{1}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}xy+yz+zx=1\\x=y=z\end{cases}}\)
\(\Leftrightarrow x=y=z=\frac{1}{\sqrt{3}}\)
\(\Leftrightarrow\sqrt{a^3}=\sqrt{b^3}=\sqrt{c^3}=\frac{1}{\sqrt{3}}\)
\(\Leftrightarrow a^3=b^3=c^3=\frac{1}{3}\)
\(\Leftrightarrow a=b=c=\frac{1}{\sqrt[3]{3}}\)
Vậy \(P_{min}=\frac{1}{2}\Leftrightarrow a=b=c=\frac{1}{\sqrt[3]{3}}\)
\(A=\frac{1}{a^2+b^2+c^2}+\frac{1}{abc}=\frac{1}{a^2+b^2+c^2}+\frac{a+b+c}{abc}=\frac{1}{a^2+b^2+c^2}+\frac{1}{ab}+\frac{1}{ac}+\frac{1}{bc}\)
\(>=\frac{1}{a^2+b^2+c^2}+\frac{9}{ab+ac+bc}\)(bđt svacxo)\(=\frac{1}{a^2+b^2+c^2}+\frac{1}{ab+ac+bc}+\frac{1}{ab+ac+bc}+\frac{7}{ab+ac+bc}\)
\(>=\frac{9}{a^2+b^2+c^2+ab+ac+bc+ac+ac+bc}+\frac{7}{ab+ac+bc}\)(bđt svacxo)
\(=\frac{9}{a^2+b^2+c^2+2ab+2ac+2bc}+\frac{7}{ab+ac+bc}=\frac{9}{\left(a+b+c\right)^2}+\frac{7}{ab+ac+bc}\)
\(=\frac{9}{1}+\frac{7}{ab+ac+bc}=9+\frac{7}{ab+ac+bc}\)
\(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2ac+2bc>=ab+ac+bc+2ab+2ac+2bc\)
\(=3ab+3ac+3bc=3\left(ab+ac+bc\right)\Rightarrow\frac{1}{3}\left(a+b+c\right)^2=\frac{1}{3}\cdot1=\frac{1}{3}>=ab+ac+bc\Rightarrow ab+ac+bc< =\frac{1}{3}\)
\(\Rightarrow9+\frac{7}{ab+ac+bc}>=9+\frac{7}{\frac{1}{3}}=9+7\cdot3=9+21=30\)
\(\Rightarrow A>=30\)dấu = xảy ra khi \(a=b=c=\frac{1}{3}\)
vậy min A là 30 khi \(a=b=c=\frac{1}{3}\)
1.
\(-1\le a\le2\Rightarrow\hept{\begin{cases}a+1\ge0\\a-2\le0\end{cases}\Rightarrow\left(a+1\right)\left(a-2\right)\le0\Leftrightarrow a^2\le}2+a\)
Tương tự \(b^2\le2+b,c^2\le2+c\Rightarrow a^2+b^2+c^2\le6+a+b+c=6\)
Dấu "=" xảy ra khi a=2,b=c=-1 và các hoán vị của chúng
Xét \(\frac{a^2+1}{a}=a+\frac{1}{a}\)
Dễ thấy dấu "=" xảy ra khi \(a=\frac{1}{3}\)
khi đó \(a+\frac{1}{a}=a+\frac{1}{9a}+\frac{8}{9a}\ge2\sqrt{\frac{a.1}{9a}}+\frac{8}{\frac{9.1}{3}}=\frac{10}{3}\)
\(\Rightarrow\frac{a}{a^2+1}\le\frac{3}{10}\)
tương tự =>đpcm