Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. \(\Leftrightarrow\left\{{}\begin{matrix}mx+m^2y=3m\\mx+4y=6\end{matrix}\right.\)
\(\Rightarrow\left(m^2-4\right)y=3\left(m-2\right)\)
\(\Leftrightarrow\left(m-2\right)\left(m+2\right)y=3\left(m-2\right)\)
Để pt có nghiệm duy nhất \(\Rightarrow\left(m-2\right)\left(m+2\right)\ne0\Rightarrow m\ne\pm2\)
Để pt vô nghiệm \(\Rightarrow\left\{{}\begin{matrix}\left(m-2\right)\left(m+2\right)=0\\3\left(m-2\right)\ne0\end{matrix}\right.\) \(\Rightarrow m=-2\)
2. Không thấy m nào ở hệ?
3. Bạn tự giải câu a
b/ \(\left\{{}\begin{matrix}6x+2my=2m\\\left(m^2-m\right)x+2my=m^2-m\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}y=\frac{\left(m-1\right)\left(1-x\right)}{2}\\\left(m^2-m-6\right)x=m^2-3m\end{matrix}\right.\)
Để hệ có nghiệm duy nhất \(\Rightarrow m^2-m-6\ne0\Rightarrow m\ne\left\{-2;3\right\}\)
Khi đó: \(\left\{{}\begin{matrix}x=\frac{m^2-3m}{m^2-m-6}=\frac{m}{m+2}\\y=\frac{\left(m-1\right)\left(1-x\right)}{2}=\frac{m-1}{m+2}\end{matrix}\right.\)
\(x+y^2=1\Leftrightarrow\frac{m}{m+2}+\frac{\left(m-1\right)^2}{\left(m+2\right)^2}=1\)
\(\Leftrightarrow m\left(m+2\right)+\left(m-1\right)^2=\left(m+2\right)^2\)
\(\Leftrightarrow m^2-4m-3=0\Rightarrow\) bấm máy, số xấu
4.
\(\Leftrightarrow\left\{{}\begin{matrix}m^2x+my=2m^2\\x+my=m+1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(m^2-1\right)x=2m^2-m-1=\left(2m+1\right)\left(m-1\right)\\y=2m-mx\end{matrix}\right.\)
- Với \(m=1\) hệ có vô số nghiệm
- Với \(m=-1\) hệ vô nghiệm
- Với \(m\ne\pm1\) hệ có nghiệm duy nhất:
\(\left\{{}\begin{matrix}x=\frac{\left(2m+1\right)\left(m-1\right)}{\left(m-1\right)\left(m+1\right)}=\frac{2m+1}{m+1}\\y=2m-mx=\frac{m}{m+1}\end{matrix}\right.\)
1)
2x + 3y = 300
Ta thấy 3y \(⋮\) 3 ; 300 \(⋮\) 3
=> 2x \(⋮\) 3
=> x \(⋮\) 3
đặt x = 3n ( n >0)
=> 2x + 3y = 300
=> 6n + 3y = 300
=> y = \(\dfrac{\left(300-6n\right)}{3}=\left(100-2n\right)\)
Vì y là số nguyên dương => y > 0
=> 100 - 2n > 0
=> 50 > n
=> 0<n<50
=> số nghiệm nguyên dương thoả mãn phương trình là :
(49-1):1+1 = 49 (nghiệm).
Bài 1 : https://hoc24.vn/hoi-dap/question/944344.html
Bài 2 : https://hoc24.vn/hoi-dap/question/944356.html
Bài 3 :
- Xét phương trình hoành độ giao điểm (d), (d2) ta được :
\(2x+1=x+2\)
=> \(2x-x=2-1\)
=> \(x=1\)
- Thay x =1 vào phương trình (d) ta được : \(y=2+1=3\)
- Thay x = 1, y = 3 vào phương trình (d1) ta được :
\(3.2+1=7\) ( luôn đúng )
=> x = 1, y = 3 là nghiệm của phương trình .
Vậy 3 đường thẳng trên đồng quy tại 1 điểm ( 1; 3 )
Bài 4 :
- Để phương trình có nghiệm duy nhất thì : \(\frac{3}{m-1}\ne\frac{m}{2}\)
=> \(m\left(m-1\right)\ne6\)
=> \(m^2-m-6\ne0\)
=> \(\left(m-\frac{1}{2}\right)^2-\frac{25}{4}\ne0\)
=> \(\left[{}\begin{matrix}m-\frac{1}{2}\ne\sqrt{\frac{25}{4}}\\m-\frac{1}{2}\ne-\sqrt{\frac{25}{4}}\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}m\ne\sqrt{\frac{25}{4}}+\frac{1}{2}\\m\ne-\sqrt{\frac{25}{4}}+\frac{1}{2}\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}m\ne3\\m\ne-2\end{matrix}\right.\)
Vậy để hệ phương trình có duy nhất 1 nghiệm thì \(m\ne-2,m\ne3\)
Để hệ có nghiệm duy nhất:
\(\Leftrightarrow\left(m-2\right).m-\left(-3\right).1\ne0\)
\(\Leftrightarrow m^2-2m+3\ne0\)
\(\Leftrightarrow\left(m-1\right)^2+2\ne0\) (luôn đúng)
Vậy hệ luôn có nghiệm duy nhất với mọi m