Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. \(\Leftrightarrow\left\{{}\begin{matrix}mx+m^2y=3m\\mx+4y=6\end{matrix}\right.\)
\(\Rightarrow\left(m^2-4\right)y=3\left(m-2\right)\)
\(\Leftrightarrow\left(m-2\right)\left(m+2\right)y=3\left(m-2\right)\)
Để pt có nghiệm duy nhất \(\Rightarrow\left(m-2\right)\left(m+2\right)\ne0\Rightarrow m\ne\pm2\)
Để pt vô nghiệm \(\Rightarrow\left\{{}\begin{matrix}\left(m-2\right)\left(m+2\right)=0\\3\left(m-2\right)\ne0\end{matrix}\right.\) \(\Rightarrow m=-2\)
2. Không thấy m nào ở hệ?
3. Bạn tự giải câu a
b/ \(\left\{{}\begin{matrix}6x+2my=2m\\\left(m^2-m\right)x+2my=m^2-m\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}y=\frac{\left(m-1\right)\left(1-x\right)}{2}\\\left(m^2-m-6\right)x=m^2-3m\end{matrix}\right.\)
Để hệ có nghiệm duy nhất \(\Rightarrow m^2-m-6\ne0\Rightarrow m\ne\left\{-2;3\right\}\)
Khi đó: \(\left\{{}\begin{matrix}x=\frac{m^2-3m}{m^2-m-6}=\frac{m}{m+2}\\y=\frac{\left(m-1\right)\left(1-x\right)}{2}=\frac{m-1}{m+2}\end{matrix}\right.\)
\(x+y^2=1\Leftrightarrow\frac{m}{m+2}+\frac{\left(m-1\right)^2}{\left(m+2\right)^2}=1\)
\(\Leftrightarrow m\left(m+2\right)+\left(m-1\right)^2=\left(m+2\right)^2\)
\(\Leftrightarrow m^2-4m-3=0\Rightarrow\) bấm máy, số xấu
4.
\(\Leftrightarrow\left\{{}\begin{matrix}m^2x+my=2m^2\\x+my=m+1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(m^2-1\right)x=2m^2-m-1=\left(2m+1\right)\left(m-1\right)\\y=2m-mx\end{matrix}\right.\)
- Với \(m=1\) hệ có vô số nghiệm
- Với \(m=-1\) hệ vô nghiệm
- Với \(m\ne\pm1\) hệ có nghiệm duy nhất:
\(\left\{{}\begin{matrix}x=\frac{\left(2m+1\right)\left(m-1\right)}{\left(m-1\right)\left(m+1\right)}=\frac{2m+1}{m+1}\\y=2m-mx=\frac{m}{m+1}\end{matrix}\right.\)
a)Thay m=1 vào hệ pt ta có
\(\left\{{}\begin{matrix}x+4y=9\\x+y=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=9-4y\\9-4y+y=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=9-4y\\9-3y=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=9-4y\\-3y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=9-4y\\y=\dfrac{1}{3}\end{matrix}\right.\Leftrightarrow}}\)
từ đâyy tự tính di nha
a: Khi m=1 thì hệ sẽ là:
x+4y=9 và x+y=8
=>y=1/3 và x=8-1/3=23/3
b: Thay x=-1 và y=3 vào hệ, ta đc:
\(\left\{{}\begin{matrix}-m+12=9\\-1+3m=8\end{matrix}\right.\Leftrightarrow m=3\)
c: Để hệ có nghiệm duy nhất thì \(\dfrac{m}{1}< >\dfrac{4}{m}\)
=>m<>2 và m<>-2
Để hệ vô nghiệm thì m/1=4/m<>9/8
=>m=2 hoặc m=-2
\(\left\{{}\begin{matrix}x+my=3\left(1\right)\\mx+4y=6\left(2\right)\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}mx+m^2y=3m\\mx+4y=6\end{matrix}\right.\)\(\Rightarrow\left(m^2-4\right)y=3m-6\)\(\Rightarrow y=\dfrac{3}{m+2}\)
Thay vào (1): \(x=3-\dfrac{3m}{m+2}\)\(=\dfrac{6}{m+2}\)
Có: x>1,y>0 nên ta có: \(\left\{{}\begin{matrix}\dfrac{6}{m+2}>1\\\dfrac{3}{m+2}>0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}\dfrac{6-m-2}{m+2}>0\\m+2>0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}\dfrac{m-4}{m+2}< 0\\m>-2\end{matrix}\right.\)
Vì m>-2 nên m+2>0 \(\Rightarrow\dfrac{m-4}{m+2}< 0\)\(\Rightarrow m-4< 0\Leftrightarrow m< 4\)
Vậy \(-2< m< 4\) thì x>1, y>0.
Ta có : \(\left\{{}\begin{matrix}mx+4y=9\\x+my=8\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}m\left(8-my\right)+4y=9\\x=8-my\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}8m-m^2y+4y=9\\x=8-my\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}y\left(4-m^2\right)=9-8m\\x=8-my\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}y=\frac{9-8m}{4-m^2}\\x=8-\frac{m\left(9-8m\right)}{4-m^2}\end{matrix}\right.\)
- Ta có : \(2x+y+\frac{38}{m^2-4}=0\)
- Thay \(x=8-\frac{m\left(9-8m\right)}{4-m^2},y=\frac{9-8m}{4-m^2}\) vào phương trình trên ta được :
\(2\left(8-\frac{m\left(9-8m\right)}{4-m^2}\right)+\frac{9-8m}{4-m^2}+\frac{38}{m^2-4}=3\)
=> \(16-\frac{2m\left(9-8m\right)}{4-m^2}+\frac{9-8m}{4-m^2}-\frac{38}{4-m^2}=3\)
=> \(\frac{2m\left(9-8m\right)}{4-m^2}-\frac{9-8m}{4-m^2}+\frac{38}{4-m^2}=13\)
=> \(\frac{18m-16m^2-9+8m+38}{4-m^2}=13\)
=> \(26m-16m^2+29=13\left(4-m^2\right)\)
=> \(26m-16m^2+29-52+13m^2=0\)
=> \(3m^2-26m+23=0\)
=> \(\left(3m-23\right)\left(m-1\right)=0\)
=> \(\left[{}\begin{matrix}3m-23=0\\m-1=0\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}m=\frac{23}{3}\\m=1\end{matrix}\right.\)
Vậy m = 23/3, m = 1 thỏa mãn điều kiện trên .
a/ Bạn tự giải
b/ Bạn tự thay nghiệm vào và giải ra m
c/ \(\Leftrightarrow\left\{{}\begin{matrix}mx+4y=9\\mx+m^2y=8m\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(m^2-4\right)y=8m-9\\x+my=8\end{matrix}\right.\)
Để hệ có nghiệm duy nhất
\(\Leftrightarrow m^2-4\ne0\Rightarrow m\ne\pm2\)
Để hệ có vô số nghiệm
\(\Leftrightarrow\left\{{}\begin{matrix}m^2-4=0\\8m-9=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m=\pm2\\m=\frac{9}{8}\end{matrix}\right.\) không tồn tại m thỏa mãn
mình giải tắt nhé vì mình không giỏi dùng công thức. Thông cảm nha.
1.
\(\left\{{}\begin{matrix}3x-y=2m+3\\x+y=3m+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{m}{4}+1\\y=\dfrac{-5m}{4}\end{matrix}\right.\)
vậy phương trình có nghiệm duy nhất là \(\left(\dfrac{m}{4}+1;\dfrac{-5m}{4}\right)\)
Thay vào đẳng thức ta được:
\(\left(\dfrac{m}{4}+1\right)^2+\left(\dfrac{-5m}{4}\right)^2=5\\ \Leftrightarrow x=\)
a. \(\left\{{}\begin{matrix}3x-5y=-9\\5x+2y=16\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=3\end{matrix}\right.\)
b.Để hpt có 1 nghiệm,
Có: \(\dfrac{3}{m}\ne\dfrac{-m}{2}\)
\(\Leftrightarrow-m^2\ne6\left(LĐ\right)\)
c.\(\left\{{}\begin{matrix}4,2-6,6m=-9\\1,4m+13,2=16\end{matrix}\right.\Leftrightarrow m=\dfrac{45}{22}\)
thay X=-1, Y=3 giải phương trình ta được m=3