Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. \(\Leftrightarrow\left\{{}\begin{matrix}mx+m^2y=3m\\mx+4y=6\end{matrix}\right.\)
\(\Rightarrow\left(m^2-4\right)y=3\left(m-2\right)\)
\(\Leftrightarrow\left(m-2\right)\left(m+2\right)y=3\left(m-2\right)\)
Để pt có nghiệm duy nhất \(\Rightarrow\left(m-2\right)\left(m+2\right)\ne0\Rightarrow m\ne\pm2\)
Để pt vô nghiệm \(\Rightarrow\left\{{}\begin{matrix}\left(m-2\right)\left(m+2\right)=0\\3\left(m-2\right)\ne0\end{matrix}\right.\) \(\Rightarrow m=-2\)
2. Không thấy m nào ở hệ?
3. Bạn tự giải câu a
b/ \(\left\{{}\begin{matrix}6x+2my=2m\\\left(m^2-m\right)x+2my=m^2-m\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}y=\frac{\left(m-1\right)\left(1-x\right)}{2}\\\left(m^2-m-6\right)x=m^2-3m\end{matrix}\right.\)
Để hệ có nghiệm duy nhất \(\Rightarrow m^2-m-6\ne0\Rightarrow m\ne\left\{-2;3\right\}\)
Khi đó: \(\left\{{}\begin{matrix}x=\frac{m^2-3m}{m^2-m-6}=\frac{m}{m+2}\\y=\frac{\left(m-1\right)\left(1-x\right)}{2}=\frac{m-1}{m+2}\end{matrix}\right.\)
\(x+y^2=1\Leftrightarrow\frac{m}{m+2}+\frac{\left(m-1\right)^2}{\left(m+2\right)^2}=1\)
\(\Leftrightarrow m\left(m+2\right)+\left(m-1\right)^2=\left(m+2\right)^2\)
\(\Leftrightarrow m^2-4m-3=0\Rightarrow\) bấm máy, số xấu
4.
\(\Leftrightarrow\left\{{}\begin{matrix}m^2x+my=2m^2\\x+my=m+1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(m^2-1\right)x=2m^2-m-1=\left(2m+1\right)\left(m-1\right)\\y=2m-mx\end{matrix}\right.\)
- Với \(m=1\) hệ có vô số nghiệm
- Với \(m=-1\) hệ vô nghiệm
- Với \(m\ne\pm1\) hệ có nghiệm duy nhất:
\(\left\{{}\begin{matrix}x=\frac{\left(2m+1\right)\left(m-1\right)}{\left(m-1\right)\left(m+1\right)}=\frac{2m+1}{m+1}\\y=2m-mx=\frac{m}{m+1}\end{matrix}\right.\)
- Thay x = 1, y = 1 vào hệ phương trình ta được :\(\left\{{}\begin{matrix}2+b=-4\\b-a=-5\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}b=-4-2=-6\\-6-a=-5\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}b=-6\\-a=-5+6=1\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}b=-6\\a=-1\end{matrix}\right.\)
Vậy giá trị của a, b lần lượt là -1, -6 .
Lời giải:
1. Khi $a=2$ thì \(\left\{\begin{matrix} x-2y=1\\ 2x+y=2\end{matrix}\right.\Rightarrow \left\{\begin{matrix} x=1\\ y=0\end{matrix}\right.\)
2. HPT \(\Leftrightarrow \left\{\begin{matrix} x=1+ay\\ ax+y=2\end{matrix}\right.\Rightarrow a(1+ay)+y=2\)
\(\Leftrightarrow y(a^2+1)=2-a(*)\)
Vì $a^2+1\neq 0$ với mọi $a$ nên $(*)$ có nghiệm $y$ duy nhất. $y$ duy nhất dẫn đến $x$ duy nhất
Do đó HPT đã cho luôn có nghiệm $(x,y)$ duy nhất
3.
Ta có: \(y=\frac{2-a}{a^2+1}\Rightarrow x=1+ay=\frac{2a+1}{a^2+1}\)
Để hệ có nghiệm dương thì \(\left\{\begin{matrix} \frac{2-a}{a^2+1}>0\\ \frac{2a+1}{a^2+1}>0\end{matrix}\right.\Rightarrow \left\{\begin{matrix} 2-a>0\\ 2a+1>0\end{matrix}\right.\Rightarrow 2> a>\frac{-1}{2}\)
Thay \(x=\sqrt{2};y=\sqrt{3}\)ta có:
\(\left\{{}\begin{matrix}2\sqrt{2}-a\sqrt{3}=b\\a\sqrt{2}+b\sqrt{3}=1\end{matrix}\right.\)
<=>\(\left\{{}\begin{matrix}a\sqrt{3}=2\sqrt{2}-b\\a\sqrt{2}+b\sqrt{3}=1\end{matrix}\right.\)
<=>\(\left\{{}\begin{matrix}a=\dfrac{2\sqrt{2}-b}{\sqrt{3}}\\\sqrt{2}\cdot\dfrac{2\sqrt{2}-b}{\sqrt{3}}+b\sqrt{3}=1\end{matrix}\right.\)
<=>\(\left\{{}\begin{matrix}a=\dfrac{2\sqrt{2}-b}{\sqrt{3}}\\4-b\sqrt{2}+3b=\sqrt{3}\end{matrix}\right.\)
<=>\(\left\{{}\begin{matrix}b\left(\sqrt{2}-3\right)=4-\sqrt{3}\\a=\dfrac{2\sqrt{2}-b}{\sqrt{3}}\end{matrix}\right.\)
<=>\(\left\{{}\begin{matrix}b=\dfrac{4-\sqrt{3}}{\sqrt{2}-3}\\a=\dfrac{2\sqrt{2}-\dfrac{4-\sqrt{3}}{\sqrt{2}-3}}{\sqrt{3}}=\dfrac{4-6\sqrt{2}-4+\sqrt{3}}{\sqrt{3}\left(\sqrt{2}-3\right)}=\dfrac{\sqrt{3}-6\sqrt{2}}{\sqrt{3}\left(\sqrt{2}-3\right)}=\dfrac{1-2\sqrt{6}}{\sqrt{2}-3}\end{matrix}\right.\)
\(\left\{{}\begin{matrix}ax+x+y=4\\ax+y=2a\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}ax+y+x=4\\ax+y=2a\end{matrix}\right.\)
Thế pt dưới vào pt trên ta có:
\(2a+x=4\Rightarrow x=4-2a\)
Thế vào pt dưới: \(y=2a-ax=2a-a\left(4-2a\right)=2a^2-2a\)
\(\Rightarrow\) Hệ luôn có cặp nghiệm duy nhất
Lại có \(x+y=4-2a+2a^2-2a=2a^2-4a+4\)
\(=2a^2-4a+2+2=2\left(a-1\right)^2+2\ge2\) \(\forall a\) (đpcm)