Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1 : dùng ĐK chặn x;y
Bài 2: pt trùng phương đặt x8 = y rồi dùng Vi-ét cho pt 1 rồi Vi-ét cho pt 2
Bài 3: rút x;y theo m rồi quy P về pt chỉ có ẩn m -> tổng bình phương cộng vs 1 hằng số
Bài 4: Đi ngủ .VV
Cách chặn x ; y của a khó quá :( nghĩ mãi ko ra , đành làm cách khác
\(1,ĐKXĐ:x\ge-y\)
Từ hệ \(\Rightarrow\hept{\begin{cases}\sqrt{x^2+x+2}=y+\sqrt{x+y}\\x+1=y+\sqrt{x+y}\end{cases}}\)
\(\Rightarrow\sqrt{x^2+x+2}=x+1\)
\(\Leftrightarrow\hept{\begin{cases}x\ge-1\\x^2+x+2=x^2+2x+1\end{cases}}\)
\(\Leftrightarrow x=1\)
Thế vào hệ có \(\sqrt{y+1}=2-y\)
\(\Leftrightarrow\hept{\begin{cases}-1\le y\le2\\y+1=y^2-4y+4\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}-1\le y\le2\\y^2-5y+3=0\end{cases}}\)
\(\Leftrightarrow y=\frac{5-\sqrt{13}}{2}\)
Vậy hệ có nghiệm \(\hept{\begin{cases}x=1\\y=\frac{5-\sqrt{13}}{2}\end{cases}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có:
\(\hept{\begin{cases}x+y=m\\x^2+y^2=-m^2+6\end{cases}\Leftrightarrow\hept{\begin{cases}x+y=m\\\left(x+y\right)^2-2xy=-m^2+6\end{cases}\Leftrightarrow}\hept{\begin{cases}x+y=m\\xy=m^2-3\end{cases}}}\)
Suy ra:
\(P=xy+2\left(x+y\right)=m^2-3+2m=\left(m^2+2m+1\right)-4=\left(m+1\right)^2-4\ge-4\)
Vậy GTNN của P là -4 khi m = -1.
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Thay m=-3 vào hẹ pt ta được:
\(\hept{\begin{cases}-3x+2y=1\\2x-4y=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}-6x+4y=2\\2x-4y=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}-4x=5\\2x-4y=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{-5}{4}\\y=\frac{-11}{8}\end{cases}}\)
Vậy hệ pt có nghiệm (x,y) =( ...) khi m=-3
b) \(\hept{\begin{cases}mx+2y=1\\2x-4y=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2mx+4y=2\\2x-4y=3\left(1\right)\end{cases}}\)
\(\Rightarrow2mx+2x=5\)
\(\Leftrightarrow2x\left(m+1\right)=5\) (*)
Để hệ pt có nghiệm duy nhất <=> (*) có nghiệm duy nhất \(\Leftrightarrow m\ne-1\)
Khi đó (*) có nghiệm duy nhất \(x=\frac{5}{2m+2}\)(2)
Thay (2) vào (1) ta được:
\(\frac{10}{2m+2}-4y=3\)
\(\Leftrightarrow4y=\frac{2-3m}{m+1}\)
\(\Leftrightarrow y=\frac{2-3m}{4m+4}\)
Ta có: \(x-3y=\frac{7}{2}\)
\(\Leftrightarrow\frac{5}{2m+2}-\frac{6-9m}{4m+4}=\frac{7}{2}\)
\(\Leftrightarrow\frac{10}{4m+4}-\frac{6-9m}{4m+4}=\frac{7}{2}\)
\(\Leftrightarrow\frac{4+9m}{4m+4}=\frac{7}{2}\)
\(\Rightarrow28m+28=8+18m\)
\(\Leftrightarrow m=-2\)(tm)
Vậy m=-2 thì hệ có nghiệm duy nhất (x,y) thỏa mãn x-3y=7/2
HPT \(\Leftrightarrow\hept{\begin{cases}x=2\\2m+y=m^2+3\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=m^2-2m+3\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\x+y=m^2-2m+5\end{cases}}}\)
Ta có : \(x+y=m^2-2m+5=\left(m-1\right)^2+4\ge4\forall m\)
Dấu "=" xảy ra \(\Leftrightarrow m=1\)
Vậy \(x+y\) đạt GTNN là 4 tại \(m=1\)
Sao lại với mọi m