Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Từ PT$(1)\Rightarrow x=m+1-my$. Thay vô PT(2):
$m(m+1-my)+y=3m-1$
$\Leftrightarrow y(1-m^2)+m^2+m=3m-1$
$\Leftrightarrow y(1-m^2)=-m^2+2m-1(*)$
Để hpt có nghiệm $(x,y)$ duy nhất thì pt $(*)$ cũng phải có nghiệm $y$ duy nhất
Điều này xảy ra khi $1-m^2\neq 0\Leftrightarrow m\neq \pm 1$
Khi đó: $y=\frac{-m^2+2m-1}{1-m^2}=\frac{-(m-1)^2}{-(m-1)(m+1)}=\frac{m-1}{m+1}$
$x=m+1-my=m+1-\frac{m(m-1)}{m+1}=\frac{3m+1}{m+1}$
Có:
$x+y=\frac{m-1}{m+1}+\frac{3m+1}{m+1}=\frac{4m}{m+1}<0$
$\Leftrightarrow -1< m< 0$
Kết hợp với đk $m\neq \pm 1$ suy ra $-1< m< 0$ thì thỏa đề.
Để hệ phương trình có nghiệm duy nhất thì \(\dfrac{1}{m}\ne\dfrac{m}{1}\)
=>\(m^2\ne1\)
=>\(m\notin\left\{1;-1\right\}\)
Khi \(m\notin\left\{1;-1\right\}\) thì \(\left\{{}\begin{matrix}x+my=m+1\\mx+y=2m\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=m+1-my\\m\left(m+1-my\right)+y=2m\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=m+1-my\\m^2+m-m^2y+y-2m=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y\left(-m^2+1\right)=-m^2+m\\x=m+1-my\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=\dfrac{m^2-m}{m^2-1}=\dfrac{m\left(m-1\right)}{\left(m-1\right)\left(m+1\right)}=\dfrac{m}{m+1}\\x=m+1-\dfrac{m^2}{m+1}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=\dfrac{m}{m+1}\\x=\dfrac{\left(m+1\right)^2-m^2}{m+1}=\dfrac{2m+1}{m+1}\end{matrix}\right.\)
Để \(\left\{{}\begin{matrix}x>=2\\y>=1\end{matrix}\right.\) thì \(\left\{{}\begin{matrix}\dfrac{2m+1}{m+1}>=2\\\dfrac{m}{m+1}>=1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{2m+1-2\left(m+1\right)}{m+1}>=0\\\dfrac{m-m-1}{m+1}>=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{2m+1-2m-2}{m+1}>=0\\\dfrac{-1}{m+1}>=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-\dfrac{1}{m+1}>=0\\-\dfrac{1}{m+1}>=0\end{matrix}\right.\Leftrightarrow m+1< 0\)
=>m<-1
Lời giải:
a.
Từ $x+y=2\Rightarrow y=2-x$. Thay vào PT(2):
$(m+1)x+m(2-x)=7$
$\Leftrightarrow x+2m=7$
$\Leftrightarrow x=7-2m$
$y=2-x=2-(7-2m)=2m-5$
Vậy hpt có nghiệm $(x,y)=(7-2m, 2m-5)(*)$
Nếu $x,y$ có 1 số $\geq 0$, một số $\leq 0$ thì $xy\leq 0< 1$
Nếu $x,y$ cùng $\geq 0$ thì áp dụng BĐT Cô-si:
$2=x+y\geq 2\sqrt{xy}\Rightarrow xy\leq 1$
Vậy tóm lại $xy\leq 1(**)$
Từ $(*); (**)$ suy ra với mọi $m$ thì hpt luôn có nghiệm $x,y$ thỏa mãn $xy\leq 1$
b.
$xy>0$
$\Leftrightarrow (7-2m)(2m-5)>0$
$\Leftrightarrow 7> 2m> 5$
$\Leftrightarrow \frac{7}{2}> m> \frac{5}{2}$
Do $m$ nguyên nên $m=3$
Thử lại thấy đúng.
a: Thay m=1 vào hệ phương trình, ta được:
\(\left\{{}\begin{matrix}x-y=1\\2x+y=4\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}3x=5\\x-y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{3}\\y=x-1=\dfrac{5}{3}-1=\dfrac{2}{3}\end{matrix}\right.\)
b: Để hệ có nghiệm duy nhất thì \(\dfrac{m}{2}\ne-\dfrac{1}{m}\)
=>\(m^2\ne-2\)(luôn đúng)
\(\left\{{}\begin{matrix}mx-y=1\\2x+my=4\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=mx-1\\2x+m\left(mx-1\right)=4\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=mx-1\\x\left(m^2+2\right)=m+4\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=\dfrac{m+4}{m^2+2}\\y=\dfrac{m\left(m+4\right)}{m^2+2}-1=\dfrac{m^2+4m-m^2-2}{m^2+2}=\dfrac{4m-2}{m^2+2}\end{matrix}\right.\)
x+y=2
=>\(\dfrac{m+4+4m-2}{m^2+2}=2\)
=>\(2m^2+4=5m+2\)
=>\(2m^2-5m+2=0\)
=>(2m-1)(m-2)=0
=>\(\left[{}\begin{matrix}2m-1=0\\m-2=0\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}m=\dfrac{1}{2}\\m=2\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x+my=2\\mx-y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2-my\\m\left(2-my\right)-y=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2-my\\2m-m^2y-y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2-my\\\left(-m^2-1\right)y+2m-1=0\left(.\right)\end{matrix}\right.\)
Để hpt có nghiệm duy nhất thì pt (.) phải có nghiệm duy nhất
\(\Rightarrow-m^2-1\ne0\Leftrightarrow m^2\ne-1\)( luôn đúng )
a, Với mọi m (1) , ta có :
\(\Leftrightarrow\left\{{}\begin{matrix}x=2-my\\y=\dfrac{1-2m}{-m^2-1}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2-\dfrac{m\left(1-2m\right)}{-m^2-1}\\y=\dfrac{1-2m}{-m^2-1}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-2m^2-2-m+2m^2}{-m^2-1}=\dfrac{m+2}{m^2+1}\\y=\dfrac{2m-1}{m^2+1}\end{matrix}\right.\)
Để x>0 thì \(\dfrac{m+2}{m^2+1}>0\) mà m2+1>0 (luôn đúng) \(\Rightarrow m+2>0\Leftrightarrow m>-2\)(2)
Để y<0 thì \(\dfrac{2m-1}{m^2+1}< 0\) mà m2+1>0(luôn đúng)
\(\Rightarrow2m-1< 0\Leftrightarrow m< \dfrac{1}{2}\)(3)
Từ (1),(2),(3) \(\Rightarrow\)với mọi m thỏa mãn -2<m<1/2 thì hpt có nghiệm (x;y) sao cho x>0 ; y<0
b, S=x-y=\(\dfrac{m+2}{m^2+1}-\dfrac{2m-1}{m^2+1}=\dfrac{3-m}{m^2+1}\)
S=\(\dfrac{m^2+1-\left(m^2+m-2\right)}{m^2+1}=1-\dfrac{m^2+2.m.\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{9}{4}}{m^2+1}\)
\(S=1-\dfrac{\left(m+\dfrac{1}{2}\right)^2-\dfrac{9}{4}}{m^2+1}\)
Ta có : \(\dfrac{\left(m+\dfrac{1}{2}\right)^2-\dfrac{9}{4}}{m^2+1}\ge\dfrac{-9}{4}\)\(\Leftrightarrow-\dfrac{\left(m+\dfrac{1}{2}\right)^2-\dfrac{9}{4}}{m^2+1}\le\dfrac{9}{4}\)
\(\Rightarrow S\le\dfrac{13}{4}\)
Vậy maxS= 13/4