Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Thay m=2 vào hpt, ta có \(\hept{\begin{cases}-x+2y=6\\6x-y=-4\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=6x+4\\-x+12x+8=6\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}11x=-2\\y=6x+4\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{-2}{11}\\y=\frac{32}{11}\end{cases}}\)
Vậy m=2 thì hpt có nghiệm duy nhất \(\left(x;y\right)=\left(\frac{-2}{11};\frac{32}{11}\right)\)
b) Ta có \(\hept{\begin{cases}\left(m-3\right)x+2y=6\\y=3mx+4\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=3mx+4\left(1\right)\\mx-3x+6mx+8=6\left(2\right)\end{cases}}\)
\(\left(2\right)\Leftrightarrow\left(7m-3\right)x=-2\)
Hpt có nghiệm duy nhất \(\Leftrightarrow\)pt (2) có nghiệm duy nhất \(\Leftrightarrow7m-3\ne0\Leftrightarrow m\ne\frac{3}{7}\)(*)
Khi đó \(\left(2\right)\Leftrightarrow x=\frac{-2}{7m-3}\). Thay vào (1) \(\Leftrightarrow y=\frac{-6m}{7m-3}+4=\frac{-6m+28m-12}{7m-3}=\frac{22m-12}{7m-3}\)
Vậy \(m\ne\frac{3}{7}\)thì hpt có nghiệm duy nhất \(\left(x;y\right)=\left(\frac{-2}{7m-3};\frac{22m-12}{7m-3}\right)\)
Vì 2x+y>0\(\Rightarrow\frac{-4}{7m-3}+\frac{22m-12}{7m-3}>0\)
\(\Leftrightarrow\frac{22m-16}{7m-3}>0\)
\(\Leftrightarrow\orbr{\begin{cases}22m-16>0;7m-3>0\\22m-16< 0;7m-3< 0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}m>\frac{8}{11};m>\frac{3}{7}\\m< \frac{8}{11};m< \frac{3}{7}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}m>\frac{8}{11}\\m< \frac{3}{7}\end{cases}}\)
Kết hợp vs đk (*) \(\Rightarrow\orbr{\begin{cases}m>\frac{8}{11}\\m< \frac{3}{7}\end{cases}}\)thì 2x+y>0
![](https://rs.olm.vn/images/avt/0.png?1311)
1:
a)\(\hept{\begin{cases}nx+x=5
\\x+y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x.\left(n+1\right)=5\left(1\right)\\x+y=1\end{cases}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a, tự làm
b,\(\hept{\begin{cases}x-my=0\\mx-y=m+1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=my\\m^2y-y=m+1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=my\\y\left(m^2-1\right)\left(1\right)\end{cases}}\)
để hpt có nghiệm duy nhất =>pt(1) có nghiệm duy nhất =>\(m^2-1\ne0\Rightarrow m\ne\pm1\)
c, \(\Rightarrow\hept{\begin{cases}x=my\\y=\frac{m+1}{m^2-1}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{m}{m-1}\\y=\frac{1}{m-1}\end{cases}}\)
để x>0,y>0 =>\(\hept{\begin{cases}\frac{m}{m-1}>0\\\frac{1}{m-1>0}\end{cases}}\Leftrightarrow\hept{\begin{cases}\orbr{\begin{cases}m< 0\\m>1\end{cases}}\\m>0\end{cases}}\Rightarrow m>0\)
d,để x+2y=1=>\(\frac{m}{m-1}+\frac{2}{m-1}=1\Leftrightarrow m+2=m-1\)
\(\Leftrightarrow0m=-3\)(vô lí)
e,ta có x+y=\(\frac{m}{m-1}+\frac{1}{m-1}=\frac{m+1}{m-1}=1+\frac{2}{m-1}\)(lưu ý chỉ làm đc với m\(\inℤ\))
để\(1+\frac{2}{m-1}\inℤ\Rightarrow m-1\inư\left(2\right)\)
\(\Rightarrow m-1\in\left\{\pm1;\pm2\right\}\Rightarrow m\in\left\{3;2;0\right\}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a)
Thay n = 2 vào hệ phương trình ta được
\(\begin{cases}3x-2y=7.2-1\\x-2y=-5.2-3\end{cases}\Leftrightarrow\hept{\begin{cases}3x-2y=13\\x-2y=-13\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}3x-x=13-\left(-13\right)\\3x-2y=13\end{cases}}\Leftrightarrow\hept{\begin{cases}2x=26\\3x-2y=13\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=13\\3.13-13=2y\end{cases}\Leftrightarrow\hept{\begin{cases}x=13\\2y=26\end{cases}}\Leftrightarrow\hept{\begin{cases}x=13\\y=13\end{cases}}}\)
Vậy khi n = 2 hệ phương trình có nghiệm x = y = 13
b)
Ta có
\(\hept{\begin{cases}3x-2y=7n-1\\x-2y=-5n-3\end{cases}\Leftrightarrow\hept{\begin{cases}3x-x=7n-\left(-5n\right)-1-\left(-3\right)\\3x-2y=7n-1\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}2x=12n+2\\3x-2y=7n-1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6n+1\\2y=3\left(6n+1\right)-7n+1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=6n+1\\2y=11n+4\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6n+1\\y=\frac{11}{2}n+2\end{cases}}\)
Vậy HPT có nghiệm \(\hept{\begin{cases}x=6n+1\\y=\frac{11}{2}n+2\end{cases}}\)
Theo bài ra ta có
\(x+5y-n=-2\)
\(\Leftrightarrow6n+1+5\left(\frac{11}{2}n+2\right)-n=-2\)
\(\Leftrightarrow6n+\frac{55}{2}n-n+1+10=-2\)
\(\Leftrightarrow\frac{65}{2}n=-2-1-10=-13\)
\(\Leftrightarrow n=-\frac{13.2}{65}=-\frac{2}{5}\)
Vậy \(n=-\frac{2}{5}\) là giá trị cần tìm
Mình làm phần c
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Theo bài ta có
\(x^2-y=\left(6n+1\right)^2-\left(\frac{11}{2}n+2\right)\)
\(=36n^2+12n+1-\frac{11}{2}n-2\)
\(=36n^2+\frac{13}{2}n-1\)
\(=\left[\left(6n\right)^2+2.6n.\frac{13}{24}+\frac{169}{576}\right]-1-\frac{169}{576}\)
\(=\left(6n+\frac{13}{24}\right)^2-\frac{745}{576}\ge-\frac{745}{576}\)
Dấu " = " xảy ra \(\Leftrightarrow\left(6n+\frac{13}{24}\right)^2=0\)
\(\Leftrightarrow6n+\frac{13}{24}=0\)
\(\Leftrightarrow n=-\frac{13}{144}\)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
số lẻ quá xem lại xem có đúng không nhé