K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Thay m=3 vào hệ pt, ta được:

\(\left\{{}\begin{matrix}3x+2y=1\\3x+4y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-1\\x=1\end{matrix}\right.\)

b: Tham khảo:

24 tháng 1 2020

\(a,\hept{\begin{cases}2x+my=m-1\\mx+2y=3-m\end{cases}\Leftrightarrow}\hept{\begin{cases}2mx+m^2y=m^2-m\\2mx+4y=6-2m\end{cases}}\)

Trừ vế cho vế ta được:\(\left(m^2-4\right)y=m^2+m-6\left(1\right)\)

- Nếu \(m^2-4=0\Leftrightarrow m=\pm2\)

  • \(m=2\left(1\right)\Leftrightarrow0y=0\)(luôn đúng)

Hệ có vô nghiệm. \(x=-y+\frac{1}{2}\)(Không thỏa \(x\in R\)khi \(y\in Z\))

  • \(m=-2\left(1\right)\Leftrightarrow0y=-4\left(vn\right)\)

- Nếu \(m\ne\pm2\left(1\right)\Leftrightarrow y=\frac{m+3}{m+2}\) 

Ta tìm được \(x=-\frac{m+1}{m+2}\)

Hệ có nghiệm duy nhất:

\(\hept{\begin{cases}x=-\frac{m+1}{m+2}\\y=\frac{m+3}{m+2}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-1+\frac{1}{m+2}\\y=1+\frac{1}{m+2}\end{cases}}\)\(x,y\in Z\Leftrightarrow\frac{1}{m+2}\in Z;m\in Z\)

\(\Leftrightarrow\orbr{\begin{cases}m+2=1\\m+2=-1\left(m\in Z\right)\end{cases}}\Leftrightarrow\orbr{\begin{cases}m=-1\\m=-3\end{cases}}\)

\(b,\)Với \(m\ne\pm2\)Hệ có nghiệm duy nhất: \(\hept{\begin{cases}x_0=-1+\frac{1}{m+2}\\y_0=1+\frac{1}{m+2}\end{cases}}\)

Trừ vế cho vế ta được: \(x_0-y_0=-2\)

Đây là hệ thức liên hệ giữa \(x_0\)và \(y_0\)không phụ thuộc vào \(m\)

5 tháng 2 2016

mấy cái này dễ mà k lm đc à ......................................nói v thui chứ t cũng k bik làm ^^

25 tháng 2 2016

a) thay m=2 ... tự thay

\(\Leftrightarrow\int^{2y+x=2\left(1\right)}_{2x-2y=1\left(2\right)}\)

=>2y+x-2=0(1)

=>-2y+2x-1=0(2)

=>-(2y-2x+1)=0(2)

=>2y-2x+1=0(2)

vẽ đồ thị hàm số ra

=>x=1;\(y=\frac{1}{2}\)hoặc 0,5

b,c ko biết nên ns thế nào ^^

5 tháng 2 2016

em mới lóp 6

a) Thay m=1 vào hệ pt, ta được:

\(\left\{{}\begin{matrix}3x-y=1\\x+2y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x-y=1\\3x+6y=15\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-7y=-14\\3x-y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\3x=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)

Vậy: Khi m=1 thì hệ phương trình có nghiệm duy nhất là (x,y)=(1;2)