Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Thay m=3 vào hệ pt, ta được:
\(\left\{{}\begin{matrix}3x+2y=1\\3x+4y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-1\\x=1\end{matrix}\right.\)
b: Tham khảo:
\(a,\hept{\begin{cases}2x+my=m-1\\mx+2y=3-m\end{cases}\Leftrightarrow}\hept{\begin{cases}2mx+m^2y=m^2-m\\2mx+4y=6-2m\end{cases}}\)
Trừ vế cho vế ta được:\(\left(m^2-4\right)y=m^2+m-6\left(1\right)\)
- Nếu \(m^2-4=0\Leftrightarrow m=\pm2\)
- \(m=2\left(1\right)\Leftrightarrow0y=0\)(luôn đúng)
Hệ có vô nghiệm. \(x=-y+\frac{1}{2}\)(Không thỏa \(x\in R\)khi \(y\in Z\))
- \(m=-2\left(1\right)\Leftrightarrow0y=-4\left(vn\right)\)
- Nếu \(m\ne\pm2\left(1\right)\Leftrightarrow y=\frac{m+3}{m+2}\)
Ta tìm được \(x=-\frac{m+1}{m+2}\)
Hệ có nghiệm duy nhất:
\(\hept{\begin{cases}x=-\frac{m+1}{m+2}\\y=\frac{m+3}{m+2}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-1+\frac{1}{m+2}\\y=1+\frac{1}{m+2}\end{cases}}\)\(x,y\in Z\Leftrightarrow\frac{1}{m+2}\in Z;m\in Z\)
\(\Leftrightarrow\orbr{\begin{cases}m+2=1\\m+2=-1\left(m\in Z\right)\end{cases}}\Leftrightarrow\orbr{\begin{cases}m=-1\\m=-3\end{cases}}\)
\(b,\)Với \(m\ne\pm2\)Hệ có nghiệm duy nhất: \(\hept{\begin{cases}x_0=-1+\frac{1}{m+2}\\y_0=1+\frac{1}{m+2}\end{cases}}\)
Trừ vế cho vế ta được: \(x_0-y_0=-2\)
Đây là hệ thức liên hệ giữa \(x_0\)và \(y_0\)không phụ thuộc vào \(m\)
mấy cái này dễ mà k lm đc à ......................................nói v thui chứ t cũng k bik làm ^^
a) thay m=2 ... tự thay
\(\Leftrightarrow\int^{2y+x=2\left(1\right)}_{2x-2y=1\left(2\right)}\)
=>2y+x-2=0(1)
=>-2y+2x-1=0(2)
=>-(2y-2x+1)=0(2)
=>2y-2x+1=0(2)
vẽ đồ thị hàm số ra
=>x=1;\(y=\frac{1}{2}\)hoặc 0,5
b,c ko biết nên ns thế nào ^^
a) Thay m=1 vào hệ pt, ta được:
\(\left\{{}\begin{matrix}3x-y=1\\x+2y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x-y=1\\3x+6y=15\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-7y=-14\\3x-y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\3x=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
Vậy: Khi m=1 thì hệ phương trình có nghiệm duy nhất là (x,y)=(1;2)
vbbbhbv,.