Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hệ vô nghiệm khi và chỉ khi:
\(\dfrac{m}{n}=-\dfrac{2}{5}\ne-\dfrac{2}{13}\)
\(\Rightarrow2n+5m=0\)
Kêyt hợp với \(2m-n=9\) ta được:
\(\left\{{}\begin{matrix}5m+2n=0\\2m-n=9\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}5m+2n=0\\4m-2n=18\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}9m=18\\4m-2n=18\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m=2\\n=-5\end{matrix}\right.\)
\(\left\{{}\begin{matrix}2y=1-mx\\3x+\left(m+1\right)y=-1\end{matrix}\right.\)
<=>\(\left\{{}\begin{matrix}y=\dfrac{1-mx}{2}\\3x+\left(m +1\right)y=-1\end{matrix}\right.\)
<=>\(\left\{{}\begin{matrix}y=\dfrac{1-mx}{2}\\3x+\left(m+1\right).\dfrac{1-mx}{2}=-1\end{matrix}\right.\)
xét phương trình 2 ta được ; (m-2)(m+3)x=m+3
với m=2 thì hpt vô nghiệm, m=3 thì hpt có nghiệm với mọi m
xét pt 1 ta được y=1+3x/2=x+1+x-1/2 thuộc Z
=>x-1=2k
=>x=2k+1
do đó y=3k+2 với m\(\ne\)3 và m\(\ne\)2 thì x=1/m-2 thuộc Z
=>m-2 thuộc\(\left\{-1,1\right\}\)=.> m thuộc\(\left\{1,3\right\}\)thỏa mãn
a Để hpt có nghiệm \(\left(x;y\right)=\left(-2;3\right)\) \(\Rightarrow\left\{{}\begin{matrix}-2+3m=4\\-2n+3=-3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}3m=6\\-2n=-6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=2\\n=2\end{matrix}\right.\)
b Để hpt có vô số nghiệm \(\Leftrightarrow\dfrac{1}{n}=\dfrac{m}{1}=\dfrac{4}{-3}\) \(\left(\dfrac{a}{a'}=\dfrac{b}{b'}=\dfrac{c}{c'}\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{n}=-\dfrac{4}{3}\\m=-\dfrac{4}{3}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m=-\dfrac{4}{3}\\n=-\dfrac{3}{4}\end{matrix}\right.\)
Vậy...
Bài 5:
b: Tọa độ giao điểm là:
\(\left\{{}\begin{matrix}2x-y=5\\2x-4y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=1\\x=1+2y=3\end{matrix}\right.\)
c; THay x=3 và y=1 vào (d3), ta được:
3m+1(2m-1)=3
=>5m-1=3
=>5m=4
=>m=4/5
Lời giải:
Từ PT(1) \(\Rightarrow y=\frac{2-mx}{2}\). Thay vào PT(2) ta có:
\(nx-5.\frac{2-mx}{2}=-13\)
\(\Leftrightarrow x(2n+5m)=-16(*)\)
Để HPT đã cho vô nghiệm thì $(*)$ phải vô nghiệm. Điều này xảy ra khi \(2n+5m=0\)
Vậy hai số $m,n$ là số thực bất kỳ thỏa mãn $2n+5m=0$ thì hpt đã cho vô nghiệm.