\(\int^{mx-y=2}_{3x+my=6}\) khi có nghiệm x+y=0 thì x2+y2
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 2 2016

ta có x+y=0=> x=-y(1)

thay (1) vào hệ pt:

  • mx+x=2
  • 3x-mx=6

=>4x=8=>x=2=> y=-2

=>x2+y2=22+(-2)2=8

15 tháng 2 2016

sorry, mìh mới học lớp seven

29 tháng 11 2015

x = 2 -my (1)

(2) => m( 2 - my) - 2y = 1

=> (m2+2) y = 2m -1 (*)=> pt luôn có nghiệm duy nhất  => \(y=\frac{2m-1}{m^2+2}\in Z\)

(*) => y m2 -2m +2y -1 =0

+ y =0 => x =2 ; m =-1/2

+y \(\ne\)0 => \(\Delta\)' =1 - 2y2 +y >/ 0 => -1/2 </ y </ 1

 => y =o loại ; y =1

với y =1 =>  m= 1 => x =1 (tm)

Vậy m= -1/2 => (x;y) =(2;0)

  m =1 => (x;y) =(1;1)

12 tháng 5 2018

Câu2 : <=> 2x4-2x2+5x5-5=0
<=>2x2(x2-1)+5(x2-1)=0

<=>(2x2+5)(x-1)(x+1)=0

<=> x={+-1 } vì 2x2+5>0 mọi x

12 tháng 5 2018

Câu 2:<=>3x3-3x2+13x2-13x=0 <=> 3x2(x-1)+13x(x-1)=0 <=> x(3x2+13)(x-1)=0 <=>x={0;1) vì 3x2+13>0 mọi X

4 tháng 5 2017

Cách khác. Không dùng điều kiện đề bài cho luôn.

\(Q=3x^2+3xy+y^2=\left(3x^2+3xy+\dfrac{3y^2}{4}\right)+\dfrac{y^2}{4}\)

\(=3\left(x+\dfrac{y}{2}\right)^2+\dfrac{y^2}{4}\ge0\)

Dấu = xảy ra khi \(x=y=0\)

4 tháng 5 2017

Từ đề bài thì: \(x+y\ge0\)

\(\Rightarrow y\ge-x\)

Ta có:

\(Q=3x^2+3xy+y^2=\left(x+y\right)^2+2x^2+xy\)

\(\ge2x^2+xy\ge2x^2-x^2\)

\(=x^2\ge0\)

Vậy GTNN là Q = 0 đạt được khi \(x=y=0\)

27 tháng 4 2015

Câu 1 : nhân 2 vào pt(2) trừ vế cho vế , câu 2 tính viet sau đó lập bảng biến thiên 

2 tháng 9 2017

a. Ta có:\(\frac{x}{y}\sqrt{\frac{y^2}{x^4}=}\) \(\frac{x}{y}.\frac{\left|y\right|}{x^2}=\frac{x.y}{x^2y}\)\(=\frac{1}{x}\)(Vì \(x\ne0;y>0\))

2 tháng 9 2017

\(3x^2\sqrt{\frac{8}{x^2}}=3x^2\frac{2\sqrt{2}}{\left|x\right|}=\frac{6x^2\sqrt{2}}{-x}=-6x\sqrt{2}\)( Vì \(x< 0\))