K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
![](https://rs.olm.vn/images/avt/0.png?1311)
CH
Cô Hoàng Huyền
Admin
VIP
13 tháng 9 2016
Cô hướng dẫn nhé.
a. Kẻ \(DK\perp BC.\)
Khi đó ta thấy \(IA=IK;DA=DK.\)Lại có \(\Delta HIK\sim\Delta KDC\left(g-g\right)\Rightarrow\frac{IH}{KD}=\frac{IK}{DC}\Rightarrow\frac{IH}{IK}=\frac{KD}{DC}\Rightarrow\frac{IH}{IA}=\frac{DA}{DC}\)
b. Ta có \(BE.AB=BH^2;CF.AC=HC^2\Rightarrow BE.AB.CF.AC=HB^2.HC^2=AH^4\)
\(\Rightarrow BE.CF\left(AB.AC\right)=AH^4\Rightarrow BE.CF.AH.BC=AH^4\Rightarrow BE.CF.BC=AH^3\)
c. Tính \(BE\Rightarrow AE;CF\Rightarrow AC\Rightarrow S_{EHF}\)
ABCD là hình chữ nhật
=>AC=BD và AB^2+AD^2=BD^2
=>\(AB^2+AD^2=\left(4\sqrt{5}\right)^2=80\)
=>5AD^2=80
=>AD^2=16
=>AD=4
=>AB=8
ΔABD vuông tại A có AH là đường cao
nên AH*BD=AB*AD
=>AH*4căn 5=32
=>\(AH=\dfrac{8}{\sqrt{5}}\)
ΔABD vuông tại A có AH là đường cao
nên DH*DB=AD^2
=>\(DH\cdot4\sqrt{5}=4^2=16\)
=>\(DH=\dfrac{4}{\sqrt{5}}\)
Kẻ CK vuông góc BD, O là giao điểm của AC và BD
ABCD là hình chữ nhật
=>AC=BD và AC cắt BD tại trung điểm của mỗi đường
=>O là trung điểm chung của AC và BD
=>DO=2căn 5
\(HO=2\sqrt{5}-\dfrac{4}{\sqrt{5}}=2\sqrt{5}-\dfrac{4\sqrt{5}}{5}=\dfrac{6\sqrt{5}}{5}\)
Xét ΔAHD vuông tại H và ΔCKB vuông tại K có
AD=CB
góc ADH=góc CBK
Do đó: ΔAHD=ΔCKB
=>AH=CK
Xét tứ giác AHCK có
AH//CK
AH=CK
Do đó: AHCK là hình bình hành
=>O là trung điểm của HK
=>HK=2*HO=12*căn 5/5
\(AK=\sqrt{AH^2+HK^2}=\dfrac{4\sqrt{65}}{5}\)
=>\(CH=\dfrac{4\sqrt{65}}{5}\)