Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a: Ta có: \(\widehat{BAM}+\widehat{DAM}=\widehat{BAD}=90^0\)
\(\widehat{MAD}+\widehat{NAD}=\widehat{MAN}=90^0\)
Do đó: \(\widehat{BAM}=\widehat{NAD}\)
Xét ΔABM vuông tại B và ΔADN vuông tại D có
AB=AD
\(\widehat{BAM}=\widehat{DAN}\)
Do đó: ΔABM=ΔADN
=>AM=AN
![](https://rs.olm.vn/images/avt/0.png?1311)
a: Xét ΔAED và ΔCFB có
AD=CB
\(\widehat{ADE}=\widehat{CBF}\)
DE=BF
Do đó: ΔAED=ΔCFB
Suy ra: AE=CF
Xét ΔABF và ΔCDE có
AB=CD
\(\widehat{ABF}=\widehat{CDE}\)
BF=DE
Do đó: ΔABF=ΔCDE
Suy ra: AF=CE
Xét tứ giác AECF có
AF=CE
AE=CF
Do đó: AECF là hình bình hành
![](https://rs.olm.vn/images/avt/0.png?1311)
B1 a) Xét ∆AHD và ∆CKB có: + góc AHD = góc CKB = 90độ
+ AD = BC
+ góc ADH = góc CBK(so le trong) => ∆AHD = ∆CKB(c.g.c) => AH = CK
Xét tứ giác AHCK có AH // CK(cùng ⊥ BD) và AH = CK => AHCK là hbh.
b) Do AHCK là hình bình hành => AK // CH => AM // CN, do ABCD là hình bình hành => AD // BC => AN // BM. Xét tứ giác AMCN có AM // CH và AN // BM => AMCN là hình bình hành => AN = CM.
c) Nối A -> C,M -> N do O là trung điểm HK => O là trung điểm AC => O là trung điểm MN => O;M;N thẳng hàng (do 2 đường chéo của hbh cắt nhau tại trung điểm mỗi đường)
B2:
B3: đề sai.
B4: Kẻ EI // AB(I thuộc BC) Nối I -> F; I -> K; F -> C. => ta chứng minh được ADCI là hbh (bạn tự chứng minh) Dựa theo tính chất đối xứng ta chứng minh được: ∆FIC = ∆KIC, ∆FIC có FC = IC ( = DE) và góc C = 60độ => ∆FIC đều => ∆KIC đều => góc CIK = 60độ. Do ADCI là hbh => góc AIC = góc D = 120 độ => góc CIK + góc AIC = 60độ + 120 độ = 180độ => A;I;K thẳng hàng, mà AI // AB (cách kẻ) => AK // AB(đpcm)
![](https://rs.olm.vn/images/avt/0.png?1311)
Trả lời:
Xét tam giác ADM và tam giác CBN có:
AD = CN (ABCD là hình bình hành)
ADM = CBN (2 góc so le trong, AB // CB)
DM = BN (gt)
=> Tam giác ADM = Tam giác CBN (c.g.c)
=> AM = CN (2 cạnh tương ứng)
AMD = CNB (2 góc tương ứng) => 1800 - AMD = 1800 - CNB => AMN = CNM mà 2 góc này ở vị trí so le trong => AM // CN
a) => AMCN là hình bình hành
b)=> AMCN là hình thoi
<=> AC _I_ BD
<=> ABCD là hình thoi
~Học tốt~
Xét tam giác ADM và tam giác CBN có:
AD = CN (ABCD là hình bình hành)
ADM = CBN (2 góc so le trong, AB // CB)
DM = BN (gt)
=> Tam giác ADM = Tam giác CBN (c.g.c)
=> AM = CN (2 cạnh tương ứng)
AMD = CNB (2 góc tương ứng) => 180o - AMD = 180o- CNB => AMN = CNM mà 2 góc này ở vị trí so le trong => AM // CN
=> AMCN là hình bình hành
=> AMCN là hình thoi
<=> AC _I_ BD
<=> ABCD là hình thoi
Hok tốt !
![](https://rs.olm.vn/images/avt/0.png?1311)
Xét và có:
DE=FB
=
AB = DC
=(c.g.c)
EC= AF
Ta có: ^DEC + ^FEC = ^AFB+^EFC=180* mà ^DEC=^AFB
-> ^FEC=^EFC -> AF//CE
Tứ giác AFCE có: EC=AF và AF//CE -> AFCE là hình bình hành
b, Gọi O là giao điểm của AC và EF -> O thuộc BD ( E,F thuộc BD )
Tứ giác ANCM có: AN// MC , AM//CN -> ANCM là hình bình hành.
-> O là giao điểm của AC và MN
-> AC, MN,BD đồng quy tại O