Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC có
BE,CF là các đường cao
BE cắt CF tại H
=>H là trực tâm
=>AH vuông góc BC tại K
Xét ΔBKA vuông tại K và ΔBFC vuông tại F co
góc KBA chung
=>ΔBKA đồng dạng với ΔBFC
b: ΔBKA đồng dạng với ΔBFC
=>BK/BF=BA/BC
=>BK*BC=BF*BA và BK/BA=BF/BC
c: Xét ΔBKF và ΔBAC có
BK/BA=BF/BC
góc KBF chung
=>ΔBKF đồng dạng vơi ΔBAC
phải là tam giác ABC vuông chứ ?
A B C 6 8 H
a, Xét tam giác BHA và tam giác BAC ta có :
^B chung
^BHA = ^BAC = 900
Vậy tam giác BHA ~ tam giác BAC ( g.g )
\(\Rightarrow\frac{AH}{AC}=\frac{AB}{BC}\)( tỉ số đồng dạng )
tương tự với CHA ~ tam giác CAB ( g.g )
\(\Rightarrow\frac{HC}{AC}=\frac{AC}{BC}\)( tỉ số đồng dạng )
b, tam giác ABC vuông tại A, AH là đường cao
Áp dụng định lí Py ta go ta có :
\(BC^2=AB^2+AC^2=26+64=100\Rightarrow BC=10\)cm
Ta có : \(\frac{AH}{AB}=\frac{AB}{BC}\Rightarrow AB.AC=AH.BC\)( cma )
\(\Rightarrow AH=\frac{AB.AC}{BC}=\frac{48}{10}\)cm
Ta có : \(\frac{HC}{AC}=\frac{AC}{BC}\Rightarrow AC^2=HC.BC\)
\(\Rightarrow64=HC.10\Rightarrow HC=\frac{64}{10}=\frac{32}{5}\)cm
a, áp dụng đ/lý pytago vào tam giác ABC có A =90 độ
b, Xét tam giác ABC và tam giác AHB có
góc BAC=góc BHA=90độ
B góc chung
=> tam giác ABC đồng dạng với tam giác HBA ( gg)
c =>
A B C H K I E F
Xét \(\Delta BAC\) Và \(\Delta ACH\) có :
\(\widehat{BAC}\)\(=\)\(\widehat{AHC}\) ( cùng = 900 )
\(\widehat{C}\)là góc chung
\(\Rightarrow\) \(\Delta BAC\)\(~\)\(\Delta AHC\) ( g - g ) (1)
\(\Rightarrow\)\(\frac{BC}{AC}=\frac{AB}{AH}\)\(\Rightarrow BC.AH=AB.AC\)
b) Xét \(\Delta AHC\)có :
K là trung điểm của CH
I là trung điểm của AH
\(\Rightarrow\)IK // AC
Do IK // AC :
\(\Rightarrow\)\(\Delta HIK\)\(~\)\(\Delta HAC\) (2)
Từ (1) và (2) =) \(\Delta HIK\)\(~\)\(\Delta ABC\)
Do \(HE\)\(\perp\)\(AB\)\(\Rightarrow\)\(\widehat{A\text{E}H}\)= 900
\(HF\)\(\perp\)\(AC\)\(\Rightarrow\)\(\widehat{FHE}\)= 900
Xét tứ giác AEHF có:
\(\widehat{BAC}=\widehat{A\text{E}H}=\widehat{FHE}\)\(=90^0\)
\(\Rightarrow\)AEHF là hình chữ nhật \(\Rightarrow\) AE = HF
Xét \(\Delta ABC\)\(\perp\)tại \(A\)
Áp dụng định lí py - ta - go
BC2 = AB2 + AC2
52 = 32 + AC2
AC2 = 16
AC = 4 ( cm )
Ta có ; \(S_{\Delta ABC}\)\(=\frac{AB.AC}{2}\)\(=\frac{3.4}{2}=6\)cm2
\(S_{\Delta ABC}=\frac{1}{2}.BC.AH\)\(=\frac{1}{2}.5.AH=2,5.AH\)
\(\Rightarrow2,5.AH=6\)\(\Rightarrow AH=2,4\)cm
Xét \(\Delta AHC\)\(\perp\)tại A
Áp dụng định lí py - ta - go
AC2 = AH2 + HC2
42 = (2,4)2 + CH2
CH2 = 10,24
CH = 3,2 cm
Ta có : \(S_{\Delta AHC}=\frac{AH.AC}{2}=\)\(\frac{2,4.3,2}{2}=3,84\)cm2
\(S_{\Delta AHC}=\frac{1}{2}.AC.HF\)\(=\frac{1}{2}.4.HF=2.HF\)
\(\Rightarrow\)2.HF = 3.84
HF = 1.92 cm
\(\Rightarrow A\text{E}=1,92\)( Vì HF = AE , cmt)