Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, MD là tia phân giác \(\Delta ABM\)
=> \(\frac{AD}{BD}=\frac{AM}{BM}\) (1)
ME là tia phân giác \(\Delta ACM\)
=> \(\frac{AE}{CE}=\frac{AM}{MC}\) (2)
AM là đường trung tuyến
=> MB = MC
=> \(\frac{AM}{BM}=\frac{AM}{MC}\)
Ta lét đảo => \(DE//BC\)
2/. Tam giác AKC có
CH là đường cao
AE là đường cao
Ch cắt AE tại E
Nên E là trực tâm của tam giác AKC
3/. Ta có góc HAC + góc HCA = 90 độ
Ta có góc IEC + góc ECI = 90 độ => góc ICE + góc HCA = 90 độ
=> góc HAC = góc IEC (1)
Ta có IH = AH (tam giác AIK vuông tại I, HI là trung tuyến)
=> tam giác AHI cân tại H => góc HAI = góc HIA => góc HAC = góc HIA (2)
Ta có IM = MẸ (tam giác EIC vuông tại I, IM là trung tuyến
=> tam giác EMI cân tại M => góc IEM = góc MIE => góc IEC = góc MIE (3)
Từ (1)(2)(3) ta suy ra góc HIA = góc MIE (4)
Ta có góc HIA + góc HIE = 90 độ(5)
góc HIE + góc EIM = 90 độ(6)
Từ (4)(5)(6) ta suy ra góc HIE + góc EIM = 90 độ => HI vuông góc với IM
a: Xét tứ giác AECF có
AE//CF
AE=CF
Do đó: AECF là hình bình hành
b: Ta có: AE+EB=AB
FC+FD=CD
mà AB=CD
và AE=FC
nên EB=FD
Xét tứ giác EBFD có
EB//FD
EB=FD
DO đó: EBFD là hình bình hành
Suy ra: DE=BF
Bài 4:
Xét ΔAED vuông tại E và ΔBFC vuông tại F có
AD=BC
góc D=góc C
Do đó: ΔAED=ΔBFC
=>DE=CF
Bài 3:
a: Xét ΔADC và ΔBCD có
AD=BC
AC=BD
DC chung
Do đó: ΔADC=ΔBCD
=>góc ACD=góc BDC
b: Ta co: góc ACD=góc BDC
=>góc EAB=góc EBA
=>ΔEAB cân tại E
a: Ta có: AE+EB=AB
DF+FC=DC
mà AE=FC
và AB=DC
nên EB=DF
Xét tứ giác EBFD có
EB//DF
EB=DF
Do đó: EBFD là hình bình hành
Suy ra: DE=BF
b: Xét tứ giác AECF có
AE//CF
AE=CF
Do đó: AECF là hình bình hành
a) Ta có : t/g ABCD là hbh
Suy ra : AB//CD
Suy ra : góc FAE = góc AED ( 2 góc ở vị trí slt)
Mà góc FAE = góc DAE ( AE là tia p/g của góc A )
Suy ra : góc DAE = góc DEA
Suy ra : tam giác ADE cân tại D
b) CMTT : tam giác FBC cân tại B ( như phần a )
Suy ra : BC = BF
c) Từ (a) suy ra : AD=DE ( tam giác ADE cân tại D )
Mà BC=BF ( theo b )
Suy ra : BF=BC=AD=DE
Suy ra : DE=BF
d) Từ c) suy ra : DE=BF
Ta có : AB = AF+FB
CD=DE+CE
Mà : DE=BF ; AB=CD ( ABCD là hbh )
Suy ra : AF=CE
Xét t/g AECF có : AF//CE ( AB//CD)
AF=CE ( cmt )
Suy ra : t/g AECF là hbh.