K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 8 2017
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1) b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c) =(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc) c)Đặt x-y=a;y-z=b;z-x=c a+b+c=x-y-z+z-x=o đưa về như bài b d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y) =x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

a: Xét tứ giác BEDF có 

BE//DF

BE=DF

Do đó: BEDF là hình bình hành

Suy ra: BF//DE

hay EM//FN

Xét tứ giác AECF có

AE//CF

AE=CF

Do đó: AECF là hình bình hành

Suy ra: AF//CE

hay MF//EN

Xét tứ giác EMFN có 

EM//FN

EN//MF

Do đó: EMFN là hình bình hành

b: Ta có: AECF là hình bình hành

nên Hai đường chéo AC và EF cắt nhau tại trung điểm của mỗi đường(1)

Ta có: EMFN là hình bình hành

nên Hai đường chéo EF và MN cắt nhau tại trung điểm của mỗi đường(2)

Từ (1) và (2) suy ra AC,EF,MN đồng quy

F= \(-\frac{1}{2}x^2\)- 2x -6G=(x-1)(x+2)-5CMR đa thức bậc 2 luôn dương hoặc luôn âmBài 1: Cho HBH ABCD. Lấy các điểm E,F,H,G lần lượt trên AB,BC,BC và DA sao cho AE=CH, BF=DG. CMR các tứ giác AECH, BFDG, AGCF, EFHG là HBH và AC,BD,EH,FG cắt nhau tại trung điểm mỗi đoạn thẳng đó.Bài 2: Cho HBH ABCD. Gọi E,F lần lượt là trung điểm của AB và AD. CF và CE cắt BD lần lượt tại M và N. CM DM = MN = NBBài 3: Cho tam giác ABC,...
Đọc tiếp

F= \(-\frac{1}{2}x^2\)- 2x -6

G=(x-1)(x+2)-5

CMR đa thức bậc 2 luôn dương hoặc luôn âm

Bài 1: Cho HBH ABCD. Lấy các điểm E,F,H,G lần lượt trên AB,BC,BC và DA sao cho AE=CH, BF=DG. CMR các tứ giác AECH, BFDG, AGCF, EFHG là HBH và AC,BD,EH,FG cắt nhau tại trung điểm mỗi đoạn thẳng đó.

Bài 2: Cho HBH ABCD. Gọi E,F lần lượt là trung điểm của AB và AD. CF và CE cắt BD lần lượt tại M và N. CM DM = MN = NB

Bài 3: Cho tam giác ABC, gọi M,N,q lần lượt là trung điểm của MQ,BQ,MC. CM tứ giác IJKN là HBH

Bài 4: Cho tam giác ABC, trung tuyên BD = 4cm. Gọi E và F theo thứ tự là trung điểm của CD và BC. GỌi G là giao điểm của EF và AB. Tính độ dài EG.

Các bạn giải theo chương trình lớp 8 HKI, viết ra giấy r gửi qua FB cho mình, bạn nào nhanh và đúng nhất nhận 100k từ mk qua FB nha. Hạn cuối chiều nay

Link FB: https://www.facebook.com/thaison.nguyenvu.79

1
14 tháng 8 2020

Ta có:

a) \(F=-\frac{1}{2}x^2-2x-6=-\frac{1}{2}\left(x^2+4x+4\right)-4\)

\(=-\frac{1}{2}\left(x+2\right)^2-4\le-4< 0\left(\forall x\right)\)

=> F luôn âm với mọi x

b) \(G=\left(x-1\right)\left(x+2\right)-5=x^2+x-2-5\)

\(=x^2+x-7=\left(x^2+x+\frac{1}{4}\right)-7-\frac{1}{4}=\left(x+\frac{1}{2}\right)^2-\frac{29}{4}\)

Ko thể xác định G luôn âm hay dương

9 tháng 11 2017

A B C D P Q E F
a) Có \(DE=\frac{1}{2}DA\)\(BF=\frac{1}{2}BC\).
Tứ giác ABCD là hình bình hành nên DE = BC suy ra DE = BF.
Mà DE // BF.
Vì vậy tứ giác BEDF là hình bình hành.
b) Theo chứng minh câu a tứ giác BEDF là hình bình hành suy ra BE // DF.
Xét tam giác ADQ có E là trung điểm của DA và AB // DQ nên P là trung điểm của AQ.
Vì vậy AP = PQ. (1)
Xét tam giác BCP có F là trung điểm của BC và FD // BE nên Q là trung điểm của của PC.
Vì vậy PQ = QC. (2)
Từ (1) và (2) suy ra: AP = PQ = QC.
c)Do AE // BC nên áp dụng định lý Ta-lét:
\(\frac{AP}{PB}=\frac{EP}{PB}=\frac{1}{2}\).
Suy ra \(EP=\frac{1}{2}PB\).
Mặt khác R là trung điểm của PB nên PR = RB \(=\frac{1}{2}PB\).
Từ đó suy ra \(EP=PR=RB\).
Vậy P là trung điểm của AR và ta cũng có P là trung điểm AQ nên tứ giác ARQE là hình bình hành.


 

25 tháng 8 2018

Bài này mình làm xong rồi nhưng lỡ tay bấm nút hủy.

MONG CÁC BẠN  

24 tháng 6 2017

A B C D M N O F E

a)

Tứ giác BMDN có BN=DM (=1/2AD=1/2BC) VÀ BN//DM (AD//BC) nên BMDN là hình bình hành. => BM//DN

Tam giác ADF có:

M là trung điểm của AD

ME//DF ( BM//DN )

Suy ra E là trung điểm của AF hay AE=EF       (1)

Tam giác BCE có:

N là trung điểm của BC

NF//DE ( BM//DN )

Suy ra F là trung điểm của CE hay EF=FC       (2)

Từ (1) và (2) suy ra AE=EF=FC

b) 

Xét \(\Delta AME\)và \(\Delta CNF\)

AM=CN ( =1/2AD = 1/2BC )

AE=CF (Theo câu a)

\(\widehat{MAE}=\widehat{NCF}\)(Vì AD//BC)

Suy ra \(\Delta AME=\Delta CNF\left(c.g.c\right)\)

\(\Rightarrow ME=NF\)( 2 cạnh tương ứng)

Mà ME//NF ( Vì BM//DN ) nên tứ giác MENF là hình bình bình hành

               Các bạn nhớ k ủng hộ mik nha! Thanks!