Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi I là trung điểm của AD, K là giao điểm của CI và BD. Kẻ ME ^ BD tại E, CF ^ BD tại F.
Có B N = 1 3 B D , E M = 1 2 C F S B M N = 1 2 E M . B N = 1 2 . 1 2 C F . 1 3 B D = 1 6 S B C D = 1 12 S ⇒ S M N D C = 1 2 S − 1 12 S = 5 12 S
![](https://rs.olm.vn/images/avt/0.png?1311)
a, Ta có: AE=EB , AH=HD
⇒ EH là đg TB của △ABD ⇒ EH//BD , EH=\(\dfrac{BD}{2}\)
C/m tương tự ta có: FG là đg TB của △BDC ⇒ FG//BD , FG=\(\dfrac{BD}{2}\)
⇒ EH//FG , EH=FG ⇒ tứ giác EFGH là hbh
b, SEFGH = S - (SAEH +
SEBF + SFCG + SHDG)
A E B F C G D H +
![](https://rs.olm.vn/images/avt/0.png?1311)
A B C D M N T h
a) dt(ABMD) = dt(ABCD) - dt(CMD)
Mà dt(CMD) = 1/2 MC.h = 1/2 . 2/3 . BC .h = 1/3 dt(ABCD) = 1/3.S
(với h là đường cao hạ từ A xuống BC của hình bình hành ABCD)
Suy ra dt(ABMD) = S - 1/3 S = 2/3. S
b) dt(ABNT) = BN.h = 2/3 BC . h = 2/3 . S