Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
A B C O I G J S K H L A' M N
a) Đặt J là trung điểm cạnh BC. Theo quan hệ vuông góc giữa đường kính và dây ta có ^OIC = ^OJC = 900
Vậy I thuộc đường tròn đường kính OC cố định (đpcm).
b) Kẻ đường kính BK của (O). d cắt CK tại điểm S. Ta có AK vuông góc AB, IS vuông góc AB
Suy ra IS // AK. Vì I là trung điểm cạnh AC của tam giác AKC nên S là trung điểm CK cố định (đpcm).
c) OJ cắt (O) tại hai điểm phân biệt là A' và L (A' thuộc cung lớn BC). Hạ AH vuông góc BC
Ta thấy \(AH+JL\le AL\le2R=A'L\Rightarrow AH\le A'L-JL=A'J\)
Suy ra \(S=\frac{AH.BC}{2}\le\frac{A'J.BC}{2}\)(không đổi). Vậy S lớn nhất khi A trùng A'.
d) Trên đoạn JB,JC lấy M,N sao cho JM = JN = 1/6.BC. Khi đó M,N cố định.
Đồng thời \(\frac{JG}{JA}=\frac{JM}{JB}=\frac{JN}{JC}=\frac{1}{3}\). Suy ra ^MGN = ^BAC = 1/2.Sđ(BC (Vì GM // AB; GN // AC)
Vậy G là các điểm nhìn đoạn MN dưới một góc không đổi bằng 1/2.Sđ(BC, tức là một đường tròn cố định (đpcm).
![](https://rs.olm.vn/images/avt/0.png?1311)
A B O C D M S
Gọi (OMD) cắt (O) tại S khác D. Ta có OD = OS, suy ra (OD và (OS của đường tròn (OMD) bằng nhau
Hay ^OMD = ^OMS. Lại có ^MCO = 1800 - ^OCD = 1800 - ^ODC = ^MSO. Do đó ^MOC = ^MOS
Suy ra \(\Delta\)MCO = \(\Delta\)MSO (g.c.g). Vậy S đối xứng với C qua AB, mà C và AB đều cố định nên S cố định
Khi đó (OMD) luôn đi qua 2 điểm cố định là S và O (đpcm).
A B O C M D K
gọi K là điểm đối xứng với C qua AB; C cố định nên K cũng cố định
ta sẽ chứng minh K thuộc đường tròn ngoại tiếp tam giác OMD hay tứ giác OMDK là tứ giác nội tiếp đường tròn
K đối xứng với C qua AB => gócKOD= gócDOC = 2 gócCBA = gócCBK
mà tứ giác BCMN nội tiếp nên gócCBK= góc CMK=gócDMK
vậy góc KOD= gócDMK => tứ giác DOMK nội tiếp đường tròn hay đường tròn ngoại tiếp tam giác OMD luôn đi qua O và K là 2 điểm cố định
Thật ra thì phải lấy kiến thức lớp 11 về phép tịnh tiến để giải bài này
Gọi E là điểm đối xứng với B qua A thì E cố định
+ \(\left\{{}\begin{matrix}AE=AB\\AE//CD\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}AE=CD\\AE//CD\end{matrix}\right.\)
=> Tứ giác ACDE là hbh
=> DE = AC = 2cm
Do đó : điểm D di động trên đg tròn ( E, 2cm ) cố định