K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Trả lời:

Xét tam giác ADM và tam giác CBN có:

AD = CN (ABCD là hình bình hành)

ADM = CBN (2 góc so le trong, AB // CB)

DM = BN (gt)

=> Tam giác ADM = Tam giác CBN (c.g.c)

=> AM = CN (2 cạnh tương ứng)

AMD = CNB (2 góc tương ứng) => 1800 - AMD = 1800 - CNB => AMN = CNM mà 2 góc này ở vị trí so le trong => AM // CN

a) => AMCN là hình bình hành

b)=> AMCN là hình thoi

<=> AC _I_ BD

<=> ABCD là hình thoi

                              ~Học tốt~

1 tháng 4 2020

Xét tam giác ADM và tam giác CBN có:

AD = CN (ABCD là hình bình hành)

ADM = CBN (2 góc so le trong, AB // CB)

DM = BN (gt)

=> Tam giác ADM = Tam giác CBN (c.g.c)

=> AM = CN (2 cạnh tương ứng)

AMD = CNB (2 góc tương ứng) => 180o - AMD = 180o- CNB => AMN = CNM mà 2 góc này ở vị trí so le trong => AM // CN

=> AMCN là hình bình hành

=> AMCN là hình thoi

<=> AC _I_ BD

<=> ABCD là hình thoi

Hok tốt !

a: Xét tứ giác BEDF có 

O là trung điểm của FE

O là trung điểm của BD

Do đó: BEDF là hình bình hành

 

a: Xét ΔAED vuông tại E và ΔCFB vuông tại F có

AD=CB

\(\widehat{ADE}=\widehat{CBF}\)

Do đó: ΔAED=ΔCFB

Suy ra AE=CF: ED=FB

Xét tứ giác AECF có 

AE//CF

AE=CF

Do đó: AECF là hình bình hành

b: Xét ΔKBF vuông tại F và ΔIDE vuông tại E có

FB=ED

\(\widehat{KBF}=\widehat{IDE}\)

Do đó: ΔKBF=ΔIDE

Suy ra: KB=ID

Xét tứ giác KBID có 

KB//ID

KB=ID

Do đó: KBID là hình bình hành

Suy ra: Hai đường chéo KI và BD cắt nhau tại trung điểm của mỗi đường

 

a: Xét ΔAED vuông tại E và ΔCFB vuông tại F có

AD=CB

\(\widehat{ADE}=\widehat{CBF}\)

Do đó: ΔAED=ΔCFB

Suy ra: AE=CF và DE=BF

Xét tứ giác AECF có 

AE//CF

AE=CF

Do đó: AECF là hình bình hành

b: Xét ΔKBF vuông tại F và ΔIDE vuông tại E có

KB=ID

\(\widehat{KBF}=\widehat{IDE}\)

Do đó: ΔKBF=ΔIDE

Suy ra: KB=ID

Xét tứ giác BKDI có

BK//ID

BK=ID

Do đó: BKDI là hình bình hành

Suy ra: Hai đường chéo BD và KI cắt nhau tại trung điểm của mỗi đường