K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 6 2018

Gọi A’ là điểm đối xứng với A qua O. Ta có: BH // A’C suy ra BHCA’ là hình bình hành do đó HA’ cắt BC tại trung điểm I của BC. Mà O là trung điểm của AA’ suy ra OI là đường trung bình của tam giác AHA’ suy ra  A H →  = 2 O I →

Chọn đáp án C

20 tháng 8 2019

13 tháng 5 2018

 

 

NV
26 tháng 3 2023

Theo t/c đường tròn, do M là trung điểm BC \(\Rightarrow OM\perp BC\)

Áp dụng định lý Pitago:

\(OM=\sqrt{OC^2-CM^2}=\sqrt{R^2-\left(\dfrac{BC}{2}\right)^2}=3\)

\(\Rightarrow\) Quỹ tích M là đường tròn tâm \(\left(O;3\right)\)

Mặt khác do G là trọng tâm tam giác ABC

\(\Rightarrow\overrightarrow{AG}=\dfrac{2}{3}\overrightarrow{AM}\)

\(\Rightarrow\) G là ảnh của M qua phép vị tự tâm A tỉ số \(k=\dfrac{2}{3}\)

\(\Rightarrow\) Quỹ tích G là ảnh của \(\left(O;3\right)\) qua phép vị tự tâm A tỉ số \(k=\dfrac{2}{3}\)

\(\Rightarrow\) Quỹ tích G là đường tròn bán kính \(\dfrac{2}{3}.3=2\)

14 tháng 4 2016

- Theo tính chất hình bình hành : BA=DC \(\Rightarrow\overrightarrow{AB}=\overrightarrow{CD}\). Nhưng theo giả thiết A,B cố định , cho nên  \(\overrightarrow{AB}\)  cố định . Ví C chạy trên (O;R) , D là ảnh của C qua phép tịnh tiến theo \(\overrightarrow{AB}\) , cho nên D chạy trên đường tròn O’ là ảnh của đường tròn O

- Cách xác định (O’) : Từ O kẻ đường thẳng // với AB , sau đó dựng véc tơ \(\overrightarrow{OO'}=\overrightarrow{AB}\). Từ O’ quay đường tròn bán kính R , đó chính là đường tròn quỹ tích của D.

23 tháng 4 2017

B, C cố định nên trung điểm I của BC cũng cố định. G là trọng tâm tam giác ABC nên ta có  I G →   =   1 / 3   I A →  ⇒ có phép vị tự I tỉ số k = 1/3 biến A thành G. A chạy trên (O) nên G chạy trên (O’) ảnh của O qua phép vị tự trên.

Đáp án C