\(y=x^3-3\left(m+1\right)x^2+9x+m-2\left(1\right)\) có đồ thị là Cm. Xác địn...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 3 2016

\(y'=3x^2-6\left(m+1\right)x+9\)

Để hàm số có cực đại và cực tiểu :

\(\Delta'=9\left(m+1\right)^2-3.9>0\Leftrightarrow m\in\left(-\infty;-1-\sqrt{3}\right)\cup\left(-1+\sqrt{3};+\infty\right)\)

Ta có \(y=\left(\frac{1}{3}x-\frac{m+1}{3}\right)\left(3x^2-6\left(m+1\right)x+9\right)-2\left(m^2+2m-2\right)x+4m+1\)

vậy đường thẳng đi qua 2 điểm cực đại và cực tiểu là \(y=-2\left(m^2+2m-2\right)x+4m+1\)

Vì 2 điểm cực đại và cực tiểu đối xứng qua đường thẳng \(y=\frac{1}{2}x\), ta có điêu kiện cần là 

\(\left[-2\left(m^2+2m-2\right)\right]\frac{1}{2}=-1\Leftrightarrow m^2+2m-3=0\)

\(\Leftrightarrow\begin{cases}m=1\\m=-3\end{cases}\)

Khi m=1 phương trình đường thẳng đi qua 2 điểm cực đại và cực tiểu là y=-2x+5. Tọa độ trung điểm cực đại và cực tiểu là 

\(\begin{cases}\frac{x_1+x_2}{2}=\frac{4}{2}=2\\\frac{y_1+y_2}{2}=\frac{-2\left(x_1+x_2\right)+10}{2}=1\end{cases}\)

Tọa độ trung điểm cực đại và cực tiể là (2;1) thuộc đường thẳng \(y=\frac{1}{2}x\)=> m=1

Khi m=-3 suy ra phương trình đường thẳng đi qua 2 điểm cực đại và cực tiểu là y=-2-11

=> m=-3 không thỏa mãn

Vậy m=1 thỏa mãn điều kiện đề bài

27 tháng 3 2016

\(y'=2x^2-6\left(m+1\right)x+9\)

Để hàm số có cực đại, cực tiểu

\(\Delta'=9\left(m+1\right)^2=3.9>0\)

     \(=\left(m+1\right)^2-3>0\)

\(\Leftrightarrow m\in\left(-\infty;-1-\sqrt{3}\right)\cup\left(-1+\sqrt{3};+\infty\right)\)

Ta có : \(y=\left(\frac{1}{3}x-\frac{m+1}{3}\right)\left(3x^2-6\left(m+1\right)x+9\right)-2\left(m^2+2m-2\right)x+4m+1\)

Gọi tọa độ điểm cực đại và cực tiểu là \(\left(x_1;y_1\right)\) và  \(\left(x_2;y_2\right)\)

=> \(y_1=-2\left(m^2+2m-2\right)x_1+4m+1\)

   \(y_2=-2\left(m^2+2m-2\right)x_2+4m+1\)

Vậy đường thẳng đi qua 2 điểm cực đại và cực tiểu là 

\(y=-2\left(m^2+2m-2\right)x+4m+1\)

Vì 2 điểm cực đại và cực tiểu đối xứng nhau qua đường thẳng \(y=\frac{1}{2}x\) ta có điều kiện cần là :

\(\left[-2\left(m^2+2m-2\right)\right]\frac{1}{2}=-1\)

\(\Leftrightarrow m^2+2m-2=1\)

\(\Leftrightarrow m^2+2m-3=0\)

\(\Leftrightarrow\begin{cases}m=1\\m=-3\end{cases}\)

Theo định lí Viet ta có \(\begin{cases}x_1+x_2=2\left(m+1\right)\\x_1x_2=3\end{cases}\)

Khi m =1 => phương trình đường thẳng đi qua 2 điểm cực đại và cực tiểu là 

\(y=-2x+5\)

Tọa độ trung điểm cực đại và cực tiểu là :

\(\begin{cases}\frac{x_1+x_2}{2}=\frac{4}{2}=2\\\frac{y_1+y_2}{2}=\frac{-2\left(x_1+x_2\right)+10}{2}=1\end{cases}\)

Tọa độ trung điểm cực đại và cực tiểu là (2;1) thuộc đường thẳng \(y=\frac{1}{2}x\Rightarrow m=1\) thỏa mãn

Khi m=-3 phương trình đường thẳng đi qua 2 điểm cực đại và cực tiểu là y=-2x-11

(làm tương tự cách như trên)

 
26 tháng 3 2016

kho nhu bay len mat troioe

26 tháng 3 2016

gợi ý :

Tìm giá trị của \(m\) để hàm số có cực đại ,cực tiểu .

27 tháng 3 2016

Hàm số có cực đại, cực tiểu \(\Leftrightarrow f'\left(x\right)=3x^2-6x+m^2=0\) có 2 nghiệm phân biệt

\(\Leftrightarrow\Delta'=9-3m^2>0\Leftrightarrow\left|m\right|<\sqrt{3}\)

Thực hiện phép chia \(f\left(x\right)\) cho \(f'\left(x\right)\) ta có :

\(f\left(x\right)=\frac{1}{3}\left(x-1\right)f'\left(x\right)+\frac{2}{3}\left(m^2-3\right)x+\frac{m}{3}+m\)

Với \(\left|m\right|<\sqrt{3}\) thì phương trình \(f'\left(x\right)=0\) có 2 nghiệm \(x_1,x_2\) và hàm số y=f(x) đạt cực trị tại \(x_1,x_2\)

Ta có \(f'\left(x_1\right)=f'\left(x_2\right)=0\) nên :

\(y_1=f\left(x_1\right)=\frac{2}{3}\left(m^2-3\right)x_1+\frac{m^2}{3}+m\)

\(y_2=f\left(x_2\right)=\frac{2}{3}\left(m^2-3\right)x_2+\frac{m^2}{3}+m\)

=> Đường thẳng đi qua cực đại, cực tiểu là \(\left(d\right):y=\frac{2}{3}\left(m^2-3\right)x+\frac{m^2}{3}+m\)

Các điểm cực trị \(A\left(x_1,y_1\right);B\left(x_2,y_2\right)\) đối xứng nhau qua \(\left(\Delta\right):y=\frac{1}{2}x-\frac{5}{2}\)

\(\Leftrightarrow\left(d\right)\perp\left(\Delta\right)\) tại trung điểm I của AB (*)

Ta có \(x_1=\frac{x_1+x_2}{2}=1\) suy ra từ (*) \(\Leftrightarrow\begin{cases}\frac{2}{3}\left(m^2-3\right)\frac{1}{2}=-1\\\frac{2}{3}\left(m^2-3\right).1+\frac{m^2}{3}+m=\frac{1}{2}.1-\frac{5}{2}\end{cases}\)

                                                        \(\Leftrightarrow\begin{cases}m=0\\m\left(m+1\right)=0\end{cases}\)

                                                        \(\Leftrightarrow m=0\)

 

23 tháng 4 2016

Ta có : \(y'=3x^2-6x+m^2\Rightarrow y'=0\Leftrightarrow3x^2-6x+m^2=0\left(1\right)\)

Hàm số có cực trị \(\Leftrightarrow\left(1\right)\) có 2 nghiệm phân biệt \(x_1;x_2\)

                           \(\Leftrightarrow\Delta'=3\left(3-m^2\right)>0\Leftrightarrow-\sqrt{3}< m< \sqrt{3}\)

Phương trình đường thẳng d' đi qua các điểm cực trị là : \(y=\left(\frac{2}{3}m^2-2\right)x+\frac{1}{3}m^2\)

=> Các điểm cực trị là :

\(A\left(x_1;\left(\frac{2}{3}m^2-2\right)x_1+\frac{1}{3}m^2+3m\right);B\left(x_2;\left(\frac{2}{3}m^2-2\right)x_2+\frac{1}{3}m^2+3m\right);\)

Gọi I là giao điểm của hai đường thẳng d và d' :

\(\Rightarrow I\left(\frac{2m^2+6m+15}{15-4m^2};\frac{11m^2+3m-30}{15-4m^2}\right)\)

A và B đối xứng đi qua d thì trước hết \(d\perp d'\Leftrightarrow\frac{2}{3}m^2-2=-2\Leftrightarrow m=0\)

Khi đó \(I\left(1;-2\right);A\left(x_1;-2x_1\right);B\left(x_2;-2x_2\right)\Rightarrow I\) là trung điểm của AB=> A và B đối xứng nhau qua d

Vậy m = 0 là giá trị cần tìm

24 tháng 3 2016

\(\Leftrightarrow y'=0\) 

có 2 nghiệm phân biệt \(x_1,x_2\) thỏa mãn \(x_1\)<\(x_2\)<1

\(\Leftrightarrow\)\(\begin{cases}\Delta'=4m^2-m-5>0\\f\left(1\right)=-5m+7>0\\\frac{S}{2}=\frac{2m-1}{3}<1\end{cases}\)\(\Leftrightarrow\)\(\frac{5}{4}\)<m<\(\frac{7}{5}\)

22 tháng 4 2016

Ta có \(y'=3x^2-3\left(m-2\right)x-3\left(m-1\right)\), với mọi \(x\in R\)

\(y'=0\Leftrightarrow x^2-\left(m-2\right)x-m+1=0\Leftrightarrow x_1=-1;x_2=m-1\)

Chú ý rằng với m > 0 thì \(x_1< x_2\). Khi đó hàm số đạt cực đại tại \(x_1=-1\) và đạt cực tiểu tại \(x_2=m-1\). Do đó :

\(y_{CD}=y\left(-1\right)=\frac{3m}{2};y_{CT}=y\left(m-1\right)=-\frac{1}{2}\left(m+2\right)\left(m-1\right)^2+1\)

Từ giả thiết ta có \(2.\frac{3m}{2}-\frac{1}{2}\left(m+2\right)\left(m-1\right)^2+1\Leftrightarrow6m-6-\left(m+2\right)\left(m-1\right)^2=0\)

                                                                              \(\Leftrightarrow\left(m-1\right)\left(m^2+m-8\right)=0\Leftrightarrow m=1;m=\frac{-1\pm\sqrt{33}}{2}\)

Đối chiếu yêu cầu m > 0, ta có giá trị cần tìm là \(m=1;m=\frac{-1\pm\sqrt{33}}{2}\)

29 tháng 4 2016

a) Ta có : \(y'=3x^2+2\left(m-1\right)x+m\left(m-3\right)\)

Hàm số (1) có cực đại và cực tiểu nằm 2 phía đối với trục tung <=> phương trình : \(3x^2+2\left(m-1\right)x+m\left(m-3\right)=0\) có 2 nghiệm phân biệt trái dấu

\(\Leftrightarrow P< 0\Leftrightarrow m\left(m-3\right)< 0\Leftrightarrow0< m< 3\)

Vậy \(0< m< 3\) là giá trị cần tìm

b) Khi m = 1 ta có : \(y=x^3-2x\)

Gọi \(M\left(a;a^3-2a\right)\in\left(C\right),a\ne0\)

Ta có \(y'=3x^2-2\) nên hệ số góc của \(\Delta\) là \(y'\left(a\right)=3a^2-2\)

Ta có \(\overrightarrow{OM}\left(a;a^3-2a\right)\) nên hệ số góc đường thẳng OM là \(k=a^2-2\)

Do đó : \(\Delta\perp OM\Leftrightarrow y'_a.k=-1\)

                           \(\Leftrightarrow\left(3a^2-2\right)\left(a^2-2\right)=-1\Leftrightarrow3a^4-8a^2+5=0\)

                \(M_1\left(1;-1\right);M_1\left(-1;1\right);M_3\left(-\frac{\sqrt{15}}{3};\frac{\sqrt{15}}{9}\right);M_4\left(\frac{\sqrt{15}}{3};-\frac{\sqrt{15}}{9}\right)\)          \(\Leftrightarrow\left[\begin{array}{nghiempt}a^2=1\\a^2=\frac{5}{3}\end{array}\right.\)  \(\Leftrightarrow\left[\begin{array}{nghiempt}a=\pm1\\a=\pm\frac{\sqrt{5}}{3}\end{array}\right.\)(Thỏa mãn)

Suy ra có 4 điểm thỏa mãn đề bài :\(M_1\left(1;-1\right);M_2\left(-1;1\right);M_3\left(-\frac{\sqrt{15}}{3};\frac{\sqrt{15}}{9}\right);M_4\left(\frac{\sqrt{15}}{3};-\frac{\sqrt{15}}{9}\right)\)

 

23 tháng 4 2016

\(f'\left(x\right)=6\left(x^2+\left(m-1\right)x+m\left(1-2m\right)\right)\)

\(f'\left(x\right)=0\Leftrightarrow g\left(x\right)=x^2+\left(m-1\right)x+m\left(1-2m\right)=0\)

Hàm số có cực đại, cực tiểu <=> \(f'\left(x\right)=0\) hay \(g\left(x\right)=0\) có 2 nghiệm phân biệt                                          \(\Leftrightarrow\Delta_g=\left(m-1\right)^2-4m\left(1-2m\right)=\left(3m-1\right)^2>0\Leftrightarrow m\ne\frac{1}{3}\)

Ta có \(f\left(x\right)=g\left(x\right)\left[2x+\left(m+1\right)\right]-\left(3m-1\right)^2x+m\left(m-1\right)\left(1-2m\right)\)

Với \(m\ne\frac{1}{3}\) thì \(g\left(x\right)=0\) có 2 nghiệm phân biệt \(x_1;x_2\) và hàm số đạt cực trị tại  \(x_1;x_2\)  

do \(\begin{cases}g\left(x_1\right)=0\\g\left(x_2\right)=0\end{cases}\) suy ra đường thẳng qua cực đại, cực tiểu là 

\(\Delta:y=-\left(3m-1\right)^2x+m\left(m-1\right)\left(1-2m\right)\)

Ta có cực địa, cực tiểu nằm trên đường thẳng \(y=-4x\)

\(\Leftrightarrow\begin{cases}-\left(3m-1\right)^2=-4\\m\left(m-1\right)\left(1-2m\right)=0\end{cases}\)\(\Leftrightarrow\begin{cases}\left|3m-1\right|=2\\m\in\left\{0;1;\frac{1}{2}\right\}\end{cases}\) \(\Leftrightarrow m=1\)

23 tháng 4 2016

\(f'\left(x\right)=6\left(x^2+\left(m-1\right)x+m-2\right)\)

\(f'\left(x\right)=0\Leftrightarrow g\left(x\right)=x^2+\left(m-1\right)x+m-2=0\)

Hàm số có cực đại và cực tiểu \(\Leftrightarrow f'\left(x\right)=0\) hay \(g\left(x\right)=0\) có 2 nghiệm phân biệt \(\Leftrightarrow\Delta_g=\left(m-3\right)^2>0\Leftrightarrow m\ne3\)

Ta có \(f\left(x\right)=g\left(x\right)\left[2x+\left(m-1\right)\right]-\left(m-3\right)^2x-\left(m^2-3m+3\right)\)

Với \(m\ne3\) thì \(g\left(x\right)=0\) có 2 nghiệm phân biệt \(x_1;x_2\) và hàm số đạt cực trị tại  \(x_1;x_2\)  do \(\begin{cases}g\left(x_1\right)=0\\g\left(x_2\right)=0\end{cases}\) nên \(\begin{cases}y_1=f\left(x_1\right)=-m\left(m-3\right)^2x_1-\left(m^2-3m+3\right)\\y_2=f\left(x_2\right)=-m\left(m-3\right)^2x_2-\left(m^2-3m+3\right)\end{cases}\)

Suy ra đường thẳng qua cực đại, cực tiểu là :

\(\Delta:y=-\left(m-3\right)^2x-\left(m^2-3m+3\right)\)

ta có \(\Delta\) song song với đường \(y=ax+b\)

\(\Leftrightarrow\begin{cases}m\ne3\\-\left(m-3\right)^2=a\end{cases}\)\(\Leftrightarrow\begin{cases}m\ne3,a< 0\\\left(m-3\right)^2=-a\end{cases}\) \(\Leftrightarrow\begin{cases}a< 0\\m-3=\pm\sqrt{-a}\end{cases}\) \(\Leftrightarrow\begin{cases}a< 0\\m=3\pm\sqrt{-a}\end{cases}\)

Vậy : Nếu \(a\ge0\) thì không tồn tại m

         Nếu a < 0 thì \(m=3\pm\sqrt{-a}\)