cho hàm số \(y=x^2-3x+2\) có đồ thị (P)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 11 2023

a: Đặt y=0

=>\(x^2-3x+2=0\)

=>\(x^2-x-2x+2=0\)

=>\(x\cdot\left(x-1\right)-2\left(x-1\right)=0\)

=>(x-1)(x-2)=0

=>\(\left[{}\begin{matrix}x-1=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

Vậy: Tọa độ giao điểm của (P) với trục Ox là A(1;0) và B(2;0)

b: Thay x=0 vào (P), ta được:

\(y=0^2-3\cdot0+2=2\)

Vậy: (P) cắt trục Oy tại điểm C(0;2)

c: Phương trình hoành độ giao điểm là:

\(x^2-3x+2=x-1\)

=>\(x^2-3x+2-x+1=0\)

=>\(x^2-4x+3=0\)

=>(x-1)(x-3)=0

=>\(\left[{}\begin{matrix}x-1=0\\x-3=0\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)

Khi x=1 thì \(y=1-1=0\)

Khi x=3 thì y=3-1=2

Vậy: Tọa độ giao điểm của (P) với đường thẳng y=x-1 là D(1;0) và E(3;2)

AH
Akai Haruma
Giáo viên
30 tháng 11 2023

Lời giải:
a. Gọi giao điểm của $(P)$ với $Ox$ là $A$. Vì $A\in Ox$ nên $y_A=0$
$A\in (P)$ nên $y_A=x_A^2-3x_A+2$

$\Leftrightarrow 0=x_A^2-3x_A+2$

$\Leftrightarrow (x_A-1)(x_A-2)=0$

$\Leftrightarrow x_A=1$ hoặc $x_A=2$

$\Rightarrow$ tọa độ: $(2,0), (1,0)$
b.

Gọi $B$ là giao điểm của $(P)$ với $Oy$

$B\in Oy$ nên $x_B=0$

$y_B=x_B^2-3x_B+2=2$

Vậy giao điểm là $(0,2)$

c.

PT hoành độ giao điểm:

$x^2-3x+2=x-1$
$\Leftrightarrow x^2-4x+3=0$

$\Leftrightarrow (x-1)(x-3)=0$

$\Leftrightarrow x=1$ hoặc $x=3$
Nếu $x=1$ thì $y=x-1=1-1=0$

Nếu $x=3$ thì $y=x-1=3-1=2$

Vậy 2 giao điểm là: $(1,0), (3,2)$

7 tháng 12 2016

Toán lớp 9.

26 tháng 4 2017

M N d d d1 d2 I

a) Tọa độ giao điểm của (C) và d là nghiệm của hệ phương trình:

\(\left\{{}\begin{matrix}x^2+y^2-x-7y=0\left(1\right)\\3x+4y-3=0\left(2\right)\end{matrix}\right.\)

Từ (2) => \(x=\dfrac{3-4y}{3}\) thay vào (1) ta được:

\(\left(\dfrac{3-4y}{3}\right)^2+y^2-\dfrac{3-4y}{3}-7y=0\)

<=> 16y2-24y+9+9y2-9+12y-63y=0

<=>25y2-75y=0

<=> y=0=>x=1

hoặc y=3=>x=-3

Gọi 2 giao điểm là M và N =>tọa độ M(1;0) và N(-3;3)

b) Viết lại phương trình (C): \(\left(x-\dfrac{1}{2}\right)^2+\left(y-\dfrac{7}{2}\right)^2=\dfrac{25}{2}\)

=>tọa độ tâm I(0,5;3,5)

Gọi d1,d2 là các tiếp tuyến tại M và N

VTPT của d1 là: \(\overrightarrow{IM}=\left(\dfrac{1}{2};-\dfrac{7}{2}\right)\) và M thuộc d1

=> phương trình d1: \(\dfrac{1}{2}\left(x-1\right)-\dfrac{7}{2}y=0\)

hay d1: x-7y-1=0

Bằng cách tính tương tự ta được phương trình tiếp tuyến d2:

d2:7x+y+18=0

c)Tọa độ giao điểm d1 và d2 là nghiệm của hệ:

\(\left\{{}\begin{matrix}x-7y-1=0\\7x+y+18=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{5}{2}\\y=-\dfrac{1}{2}\end{matrix}\right.\)

=>tọa độ giao điểm là (-2,5;-0,5)

NV
30 tháng 12 2020

Pt hoành độ giao điểm:

\(-x^2+2x+3=-2x+1\)

\(\Leftrightarrow x^2-4x-2=0\Rightarrow\left[{}\begin{matrix}x=2+\sqrt{6}\Rightarrow y=-3-2\sqrt{6}\\x=2-\sqrt{6}\Rightarrow y=-3+2\sqrt{6}\end{matrix}\right.\)

Vậy tọa độ giao điểm là: \(\left(2+\sqrt{6};-3-2\sqrt{6}\right)\)

 Và \(\left(2-\sqrt{6};-3+2\sqrt{6}\right)\)

30 tháng 12 2020

\(\left(P\right):y=-x^2+2x+3\\ \left(d\right):y=-2x+1\)

xét phương trình hoành độ giao điểm của (P) và (d) 

\(-x^2+2x+3=-2x+1\)

\(< =>-x^2+4x+2=0\)

\(< =>\left[{}\begin{matrix}x=2+\sqrt{6}\\x=2-\sqrt{6}\end{matrix}\right.\)

thay vào (d) => \(\left[{}\begin{matrix}x=2+\sqrt{6}=>y=-3-2\sqrt{6}\\x=2-\sqrt{6}=>y=-3+2\sqrt{6}\end{matrix}\right.\)

vậy ...

 

 

 

21 tháng 12 2020

a, Bảng biến thiên:

Đồ thị hàm số:

b, Phương trình hoành độ giao điểm

\(-x^2+2x+3=4x-5\)

\(\Leftrightarrow x^2+2x-8=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-4\end{matrix}\right.\)

Nếu \(x=2\Rightarrow y=3\Rightarrow\left(2;3\right)\)

Nếu \(x=-4\Rightarrow y=-21\Rightarrow\left(-4;-21\right)\)

Tọa độ giao điểm là:

\(\left\{{}\begin{matrix}x^2-4x+1=-2x\\y=2x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)

6 tháng 1 2022

Phương trình hoành độ giao điểm của (P) và (d) là:

-x2 + 4x - 1 = 2x

<=> -x2 + 2x - 1 = 0

<=> -(x - 1)2 = 0

<=> x = 1 --> y = 2x = 2.1 = 2

--> (1; 2)