Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
M N d d d1 d2 I
a) Tọa độ giao điểm của (C) và d là nghiệm của hệ phương trình:
\(\left\{{}\begin{matrix}x^2+y^2-x-7y=0\left(1\right)\\3x+4y-3=0\left(2\right)\end{matrix}\right.\)
Từ (2) => \(x=\dfrac{3-4y}{3}\) thay vào (1) ta được:
\(\left(\dfrac{3-4y}{3}\right)^2+y^2-\dfrac{3-4y}{3}-7y=0\)
<=> 16y2-24y+9+9y2-9+12y-63y=0
<=>25y2-75y=0
<=> y=0=>x=1
hoặc y=3=>x=-3
Gọi 2 giao điểm là M và N =>tọa độ M(1;0) và N(-3;3)
b) Viết lại phương trình (C): \(\left(x-\dfrac{1}{2}\right)^2+\left(y-\dfrac{7}{2}\right)^2=\dfrac{25}{2}\)
=>tọa độ tâm I(0,5;3,5)
Gọi d1,d2 là các tiếp tuyến tại M và N
VTPT của d1 là: \(\overrightarrow{IM}=\left(\dfrac{1}{2};-\dfrac{7}{2}\right)\) và M thuộc d1
=> phương trình d1: \(\dfrac{1}{2}\left(x-1\right)-\dfrac{7}{2}y=0\)
hay d1: x-7y-1=0
Bằng cách tính tương tự ta được phương trình tiếp tuyến d2:
d2:7x+y+18=0
c)Tọa độ giao điểm d1 và d2 là nghiệm của hệ:
\(\left\{{}\begin{matrix}x-7y-1=0\\7x+y+18=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{5}{2}\\y=-\dfrac{1}{2}\end{matrix}\right.\)
=>tọa độ giao điểm là (-2,5;-0,5)
Pt hoành độ giao điểm:
\(-x^2+2x+3=-2x+1\)
\(\Leftrightarrow x^2-4x-2=0\Rightarrow\left[{}\begin{matrix}x=2+\sqrt{6}\Rightarrow y=-3-2\sqrt{6}\\x=2-\sqrt{6}\Rightarrow y=-3+2\sqrt{6}\end{matrix}\right.\)
Vậy tọa độ giao điểm là: \(\left(2+\sqrt{6};-3-2\sqrt{6}\right)\)
Và \(\left(2-\sqrt{6};-3+2\sqrt{6}\right)\)
\(\left(P\right):y=-x^2+2x+3\\ \left(d\right):y=-2x+1\)
xét phương trình hoành độ giao điểm của (P) và (d)
\(-x^2+2x+3=-2x+1\)
\(< =>-x^2+4x+2=0\)
\(< =>\left[{}\begin{matrix}x=2+\sqrt{6}\\x=2-\sqrt{6}\end{matrix}\right.\)
thay vào (d) => \(\left[{}\begin{matrix}x=2+\sqrt{6}=>y=-3-2\sqrt{6}\\x=2-\sqrt{6}=>y=-3+2\sqrt{6}\end{matrix}\right.\)
vậy ...
a, Bảng biến thiên:
Đồ thị hàm số:
b, Phương trình hoành độ giao điểm
\(-x^2+2x+3=4x-5\)
\(\Leftrightarrow x^2+2x-8=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-4\end{matrix}\right.\)
Nếu \(x=2\Rightarrow y=3\Rightarrow\left(2;3\right)\)
Nếu \(x=-4\Rightarrow y=-21\Rightarrow\left(-4;-21\right)\)
Tọa độ giao điểm là:
\(\left\{{}\begin{matrix}x^2-4x+1=-2x\\y=2x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
a: Đặt y=0
=>\(x^2-3x+2=0\)
=>\(x^2-x-2x+2=0\)
=>\(x\cdot\left(x-1\right)-2\left(x-1\right)=0\)
=>(x-1)(x-2)=0
=>\(\left[{}\begin{matrix}x-1=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
Vậy: Tọa độ giao điểm của (P) với trục Ox là A(1;0) và B(2;0)
b: Thay x=0 vào (P), ta được:
\(y=0^2-3\cdot0+2=2\)
Vậy: (P) cắt trục Oy tại điểm C(0;2)
c: Phương trình hoành độ giao điểm là:
\(x^2-3x+2=x-1\)
=>\(x^2-3x+2-x+1=0\)
=>\(x^2-4x+3=0\)
=>(x-1)(x-3)=0
=>\(\left[{}\begin{matrix}x-1=0\\x-3=0\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)
Khi x=1 thì \(y=1-1=0\)
Khi x=3 thì y=3-1=2
Vậy: Tọa độ giao điểm của (P) với đường thẳng y=x-1 là D(1;0) và E(3;2)
Lời giải:
a. Gọi giao điểm của $(P)$ với $Ox$ là $A$. Vì $A\in Ox$ nên $y_A=0$
$A\in (P)$ nên $y_A=x_A^2-3x_A+2$
$\Leftrightarrow 0=x_A^2-3x_A+2$
$\Leftrightarrow (x_A-1)(x_A-2)=0$
$\Leftrightarrow x_A=1$ hoặc $x_A=2$
$\Rightarrow$ tọa độ: $(2,0), (1,0)$
b.
Gọi $B$ là giao điểm của $(P)$ với $Oy$
$B\in Oy$ nên $x_B=0$
$y_B=x_B^2-3x_B+2=2$
Vậy giao điểm là $(0,2)$
c.
PT hoành độ giao điểm:
$x^2-3x+2=x-1$
$\Leftrightarrow x^2-4x+3=0$
$\Leftrightarrow (x-1)(x-3)=0$
$\Leftrightarrow x=1$ hoặc $x=3$
Nếu $x=1$ thì $y=x-1=1-1=0$
Nếu $x=3$ thì $y=x-1=3-1=2$
Vậy 2 giao điểm là: $(1,0), (3,2)$