Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(a,\)Vì \(\left|x\right|=\frac{1}{3}\)
\(\Rightarrow x=\orbr{\begin{cases}\frac{1}{3}\\-\frac{1}{3}\end{cases}}\)
Với \(x=\frac{1}{3}\)
\(\Rightarrow y=3.\left(\frac{1}{3}\right)^2-2.\frac{1}{3}+1\)
\(\Rightarrow y=\frac{1}{3}-\frac{2}{3}+\frac{3}{3}\)
\(\Rightarrow y=\frac{2}{3}\)
Với \(x=-\frac{1}{3}\)
\(\Rightarrow y=3.\left(-\frac{1}{3}\right)^2-2.-\frac{1}{3}+1\)
\(\Rightarrow y=\frac{1}{3}+\frac{2}{3}+1\)
\(\Rightarrow y=1+1=2\)
\(b,y=1\)
\(\Rightarrow3x^2-2x+1=1\)
\(\Rightarrow x\left(3x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\3x=2\end{cases}}\)
\(\Rightarrow x=\orbr{\begin{cases}0\\\frac{2}{3}\end{cases}}\)
\(c,\)Tất cả các điểm trên

\(y=\left|x^2+x+16\right|+\left|x^2+x-6\right|=\left|x^2+x+16\right|+\left|6-x-x^2\right|\)
\(\ge\left|x^2+x+16+6-x-x^2\right|=22\)
Dấu m"=" xảy ra <=> \(-16\le x^2+x\le6\)
<=> \(-3\le x\le2\)
Vậy giá trị nhỏ nhất của y = 22 đạt tại \(-3\le x\le2\)

\(P=\frac{\frac{1}{a^2}}{\frac{1}{b}+\frac{1}{c}}+\frac{\frac{1}{b^2}}{\frac{1}{a}+\frac{1}{c}}+\frac{\frac{1}{c^2}}{\frac{1}{a}+\frac{1}{b}}\)
Đặt \(\hept{\begin{cases}x=\frac{1}{a}\\y=\frac{1}{b}\\z=\frac{1}{c}\end{cases}}\Rightarrow xyz=1\Rightarrow P=\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\)
Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:
\(P\ge\frac{\left(x+y+z\right)^2}{y+z+x+z+x+y}=\frac{x+y+z}{2}\ge\frac{3\sqrt[3]{xyz}}{2}=\frac{3}{2}\)
Dấu "=" xảy ra khi \(x=y=z\Leftrightarrow a=b=c=1\)
Cần cách khác thì nhắn cái

a) giải phương trình
\(\dfrac{2x^2-3x-2^{ }}{_{ }x^2-4}\) = 2
=>\(\dfrac{2x^2-3x-2}{x^2-4}\) = \(\dfrac{2\left(x^2-4\right)}{x^2-4}\)
=>2x2 - 3x - 2 = 2(x2 - 4)
<=>2x2 -3x - 2 = 2x2 - 8
<=>2x2 - 2x2 - 3x = -8 + 2
<=>-3x = -6
<=> x = 2
Vậy không tồn tại giá trị nào của x thỏa mãn điều kiện của bài toán
b) Ta phải giải phương trình
\(\dfrac{6x-1}{3x+2}\) = \(\dfrac{2x+5}{x-3}\)
=>x = \(\dfrac{-7}{38}\)
c) Ta phải giải phương trình
\(\dfrac{y+5}{y-1}\) - \(\dfrac{y+1}{y-3}\) = \(\dfrac{-8}{\left(y-1\right)\left(y+1\right)}\)
không tồn tại giá trị nào của y thỏa mãn điều kiện của bài toán
a) Chịu, tự làm
b) \(y=\left|x-1\right|+\left|x-3\right|\)
Áp dụng BĐT, ta có:
\(\left|x-1\right|+\left|x-3\right|=\left|x-1\right|+\left|3-x\right|\ge\left|x-1+3-x\right|=2\)
\(Min_y=2\Leftrightarrow\)\(\left\{{}\begin{matrix}x-1\ge0\\3-x\ge0\end{matrix}\right.\)\(\Leftrightarrow1\le x\le3\)
c) \(y\ge4\)
\(\Leftrightarrow\left|x-1\right|+\left|x-3\right|\ge4\)
Xét khoảng x<1, tự giải
Được tập nghiệm thỏa mãn \(x< 1\)
Xét khoảng \(1\le x< 3\)
Không có tập nghiệm
Xét khoảng \(x\ge3\)
Được tập nghiệm \(x\ge3\)
Câu c sai 1 chỗ rồi,bạn xem và sửa nha