Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt: d: y = ( m+1 ) x + 3
+) TH1: m = -1
=> d: y = 3
=> Khoảng cách của gốc tọa độ tới d là: 3 (1)
+) Th2: m khác -1.
Giao điểm của d với Ox là : A ( \(-\frac{3}{m+1};0\))
=> \(OA=\left|\frac{3}{m+1}\right|\)
Giao điểm của d với Oy là: \(B\left(0;3\right)\)
=> OB = 3.
Kẻ OH vuông với d tại H => AH là khoảng cách từ O tới d
Xét tam giác OAB vuông tại O. Có OH là đường cao:
=> \(\frac{1}{OH^2}=\frac{1}{OA^2}+\frac{1}{OB^2}=\frac{\left(m+1\right)^2}{9}+\frac{1}{9}>\frac{1}{9}\)vì m khác 1 => \(\left(m+1\right)^2>0\)
=> \(OH< 3\)
=> Khoảng cách từ gốc tọa độ đến d nhỏ hơn 3 (2)
Từ (1); (2) Khoảng cách từ O đến d có giá trị lớn nhất là 3 đạt tại m = -1.
Gọi d laf khoảng cách từ O đến d
+ m +1 =0 => m =-1 => d =/ -m/ = 1 (1)
+m =0 => d =0 (2)
+ m khác - 1 ; 0
x =0 => y =-m A( 0 ; -m)
y =0 => x =\(\frac{m}{m+1}\) B(\(\frac{m}{m+1}\); 0)
Áp dụng HTL trong tam gics vuông OAB
=> \(\frac{1}{d^2}=\frac{1}{OA^2}+\frac{1}{OB^2}\Rightarrow\frac{1}{d^2}=\frac{1}{m^2}+\frac{\left(m+1\right)^2}{m^2}\Rightarrow d^2=\frac{m^2}{\left(m+1\right)^2+1}=\frac{1}{2\left(\frac{1}{m^2}+\frac{1}{m}+\frac{1}{4}\right)+\frac{1}{2}}=\frac{1}{\left(\frac{1}{m}+\frac{1}{2}\right)^2+\frac{1}{2}}\le2\)
=> \(Maxd=\sqrt{2}\) khi m =-2 (3)
(1)(2)(3) => \(d=\sqrt{2}\)
Bạn viết sai rồi, đường thẳng y-mx+2 =0 hay y=mx+2 vậy bạn?
** Sửa đề: $m\neq 0; m\neq -1$
Lời giải:
Gọi đths đã cho là $(d)$.
Gọi $A,B$ lần lượt là giao điểm của $(d)$với trục $Ox, Oy$.
Do $A\in Ox$ nên $y_A=0$
$A\in (d)\Rightarrow y_A=mx_A+x_A+1$
$\Leftrightarrow 0=x_A(m+1)+1$
$\Leftrightarrow x_A=\frac{-1}{m+1}$
Do $B\in Oy$ nên $x_B=0$
$y_B=mx_B+x_B+1=m.0+0+1=1$
Gọi $h$ là khoảng cách từ gốc tọa độ đến $(d)$.
Theo hệ thức lượng trong tam giác vuông:
$\frac{1}{h^2}=\frac{1}{OA^2}+\frac{1}{OB^2}$
$\Leftrightarrow \frac{1}{h^2}=\frac{1}{x_A^2}+\frac{1}{y_B^2}$
$\Leftrightarrow \frac{1}{h^2}=1+(m+1)^2$
Với $m\neq -1$ thì không tìm được min $1+\frac{1}{(m+1)^2}$, tức là không tìm được max h.