K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Để đây là hàm sô bậc nhất thì (m-2)(m+2)=0

=>m=2 hoặc m=-2

TH1: m=2

Để hàm số nghịch biến thì (-n-4)(10-n)<0

=>(n+4)(n-10)<0

=>-4<n<10

TH2: m=-2

Để hàm số nghịch biến thì (-n+4)(-10-n)<0

=>(n-4)(n+10)<0

=>-10<n<4

2 tháng 12 2018

a)

đường thẳng (d1) song song với đường thẳng (d2) khi :

a = a' và  b  khác  b'

 suy ra :

\(m-1=3\)                \(\Leftrightarrow m=4\)

 vậy  đường thẳng (d1) song song với đường thẳng (d2) khi  m = 4

9 tháng 12 2016

a) (m^2+4)>0=> voi moi m

b)(m^2-2)<0=> -\(-\sqrt{2}< m< \sqrt{2}\)

c) (m^2+2m+2=(m+1)^2+1>0  voi m=>f(x) luon dong bien=> dpcm

9 tháng 12 2016

tong quat y=ax+b

DB khi a>0

NB khi a<0

hang so khi a=0

giai

a. với giá trị nào của m thì hàm số y= ( m+4)x +3 là hsđb : 

=> a>0=> m^2+4 >0 do m^2>=0=> m^2+4 >=0 tất nhiên >0 với mọi m

b. với giá trị nào của m tì hàm số y= (m-2)x +31 là hsnb

a<0=> m^2-2<0=> m^2<2=> !m!<\(\sqrt{2}=>-\sqrt{2}< m< \sqrt{2}\\ \)

c. chứng minh với mọi m, hàm số y=(m2+2m+2)x+3 luôn đồng biến trên R

ta ca

a=(m^2+2m+2=m^2+2m+1+1=(m+1)^2+1 do (m+1)^2>=0 moi m=> (m+1)^2+1>=1 voi moi m

=> a>0 với mọi m=> y luôn đồng biến

7 tháng 10 2021

a) hàm số bậc nhất -2m-4\(\ne\)0<=>m\(\ne-2\)

b)hàm số nghịch biến\(-2m-4< 0\Leftrightarrow m>-2\)

7 tháng 10 2021

\(a,f\left(x\right)=\left(-2m-4\right)x+1\) bậc nhất \(\Leftrightarrow-2m-4\ne0\Leftrightarrow m\ne-2\)

\(b,f\left(x\right)=\left(-2m-4\right)x+1\) nghịch biến \(\Leftrightarrow-2m-4< 0\Leftrightarrow-2m< 4\Leftrightarrow m>-2\)

9 tháng 12 2021

a) khi m khác 1/2

b)khi m >1

c) khi K<5