\(y=\left(2m-3\right)x-1\left(m\ne\frac{3}{2}\right)\) có đồ thị là đường thẳn...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
10 tháng 2 2020

Gọi A và B lần lượt là giao điểm của (d) với trục Ox và Oy

\(\left(2m-3\right)x-1=0\Rightarrow x=\frac{1}{2m-3}\Rightarrow A\left(\frac{1}{2m-3};0\right)\Rightarrow OA=\frac{1}{\left|2m-3\right|}\)

\(y=\left(2m-3\right).0-1=-1\Rightarrow B\left(0;-1\right)\Rightarrow OB=1\)

Gọi H là chân đường vuông góc hạ từ O xuống AB

Áp dụng hệ thức lượng trong tam giác vuông OAB:

\(\frac{1}{OH^2}=\frac{1}{OA^2}+\frac{1}{OB^2}\Rightarrow\frac{1}{\left(\frac{1}{\sqrt{5}}\right)^2}=\frac{1}{\frac{1}{\left(2m-3\right)^2}}+\frac{1}{1^2}\)

\(\Leftrightarrow\left(2m-3\right)^2+1=5\Rightarrow\left(2m-3\right)^2=4\Rightarrow\left[{}\begin{matrix}m=\frac{5}{2}\\m=\frac{1}{2}\end{matrix}\right.\)

22 tháng 9 2020

2) Đẳng thức điều kiện tương đương với \(\left(1+a\right)\left(1+b\right)\left(1+c\right)=1\Rightarrow1+a,1+b,1+c\ne0\)

Ta có: \(S=\frac{1}{1+\left(1+a\right)+\left(1+a\right)\left(1+b\right)}+\frac{1}{1+\left(1+b\right)+\left(1+b\right)\left(1+c\right)}\)\(+\frac{1}{1+\left(1+c\right)+\left(1+c\right)\left(1+a\right)}\)

\(=\frac{1}{1+\left(1+a\right)+\left(1+a\right)\left(1+b\right)}+\frac{1+a}{\left(1+a\right)\left[1+\left(1+b\right)+\left(1+b\right)\left(1+c\right)\right]}\)\(+\frac{\left(1+a\right)\left(1+b\right)}{\left(1+a\right)\left(1+b\right)\text{[}1+\left(1+c\right)+\left(1+c\right)\left(1+a\right)\text{]}}=\frac{1+\left(1+a\right)+\left(1+a\right)\left(1+b\right)}{1+\left(1+a\right)+\left(1+a\right)\left(1+b\right)}=1\)

15 tháng 4 2020

Vậy \(m=\frac{5}{4}\)thỏa mãn điều kiện đề bài

10 tháng 3 2017

gọi giao điểm của d và oy là A và giao điểm của ox và d là B

\(\Rightarrow\)A (0,3) va B (\(\dfrac{-3}{\sqrt{m}+3},0\))

gọi H là chân đường cao kẻ từ O(0.0) tới AB

hệ thức lượng cho tam giác vuông AOB cho.

\(\dfrac{1}{OH^2}=\dfrac{1}{OA^2}+\dfrac{1}{OB^2}=\dfrac{1}{9}+\dfrac{\left(\sqrt{m}+3\right)^2+1}{9}\)

\(\Rightarrow OH=\dfrac{3}{\sqrt{\left(\sqrt{m}+3\right)^2+1}}\)

\(OH_{max}\Leftrightarrow\sqrt{\left(\sqrt{m}+3\right)^2+1}_{min}\).vậy OH\(_{max}\)= \(\dfrac{3}{\sqrt{10}}\)

\(\Leftrightarrow\) m = 0

10 tháng 3 2017

đính chính bò số 1 ở tử phân số thứ 2