Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 3: đồ thị hs đi qua gốc tọa độ thì m - 7 =0 => m = 7
Câu 4: Hai đường thẳng song song với nhau khi m - 1 = 2 và m - 5 khác 2 => m = 3
ĐTHS y = (2-m)x-2m+5 đi qua gốc tọa độ khi x = 0 , y = 0
Thay x = 0 , y = 0 vào hàm số y = (2-m)x-2m+5 , có :
0 = (2-m).0-2m+5
<=> -2m+5=0
<=> -2m = -5
<=> m = 5/2
Vậy với m =5/2 thì ĐTHS y = (2-m)x - 2m +5 đi qua gốc tọa độ
mk chỉ cho cách lm :
a) thế điềm \(O\left(0;0\right)\) vào d \(\Leftrightarrow x=0;y=0\) --> m
b) thế điểm \(\left(3;5\right)\) vào d \(\Leftrightarrow x=3;y=5\) --> m
c) thế \(x=0;y=0\) rồi biến đổi đẳng thức d
rồi tìm điều kiện để đẳng thức đó không đúng
d) ta có đường thẳng \(d\backslash\backslash Ox\) có dạng \(y=a\) và \(d\backslash\backslash Oy\) có dạng \(x=b\)
--> \(d\backslash\backslash Ox\) \(\Leftrightarrow\) \(2m-1=0\) và --> \(d\backslash\backslash Oy\) \(\Leftrightarrow\) \(m-2=0\)
--> ...
1, \(x=13-4\sqrt{10}=\frac{26-8\sqrt{10}}{2}=\frac{10-2.4.\sqrt{10}+16}{2}=\frac{\left(\sqrt{10}-4\right)^2}{2}\)
Ta có: \(Q=x+\sqrt{5x}-2\sqrt{2x}-2\sqrt{10}\)
\(=\sqrt{x}\left(\sqrt{x}+\sqrt{5}\right)-2\sqrt{2}\left(\sqrt{x}+\sqrt{5}\right)\)
\(=\left(\sqrt{x}+\sqrt{5}\right)\left(\sqrt{x}-2\sqrt{2}\right)\)
\(=\left(\frac{4-\sqrt{10}}{\sqrt{2}}+\sqrt{5}\right)\left(\frac{4-\sqrt{10}}{\sqrt{2}}-2\sqrt{2}\right)\)
\(=\left(2\sqrt{2}-\sqrt{5}+\sqrt{5}\right)\left(2\sqrt{2}-\sqrt{5}-2\sqrt{2}\right)\)
\(=2\sqrt{2}.\left(-\sqrt{5}\right)=-2\sqrt{10}\)
2, a, Để đồ thị h/s đi qua gốc tọa độ thì x=y=0
Ta có: \(-2m-1=0\Leftrightarrow m=\frac{-1}{2}\)
b, giao điểm của h/s y=x-2m-1 với trục hoành A(2m+1;0) với trục tung B(0;-2m-1)
Có: OA=2m+1; OB=|-2m-1|=2m+1
Áp dụng hệ thức lượng trong tam giác vuông coS:
\(\frac{1}{OH^2}=\frac{1}{OA^2}+\frac{1}{OB^2}=\frac{1}{\left(2m+1\right)^2}+\frac{1}{\left(2m+1\right)^2}=\frac{2}{\left(2m+1\right)^2}\)
\(\Leftrightarrow\frac{\left(2m+1\right)^2}{2}=\left(\frac{\sqrt{2}}{2}\right)^2=\frac{1}{2}\)
\(\Leftrightarrow\left(2m+1\right)^2=1\Leftrightarrow\orbr{\begin{cases}2m+1=1\\2m+1=-1\end{cases}\Leftrightarrow\orbr{\begin{cases}m=0\\m=-1\end{cases}}}\)
c, Hoành độ trung điểm I của AB là: \(x_I=\frac{x_A+x_B}{2}=\frac{2m+1}{2}\)
Tung độ trung điểm I của AB: \(y_I=\frac{y_A+y_B}{2}=\frac{-\left(2m+1\right)}{2}\)
Ta có: \(y_I=-x_I\)=> quỹ tích trung điểm I của AB là đường thẳng y=-x
Ta có: \(\hept{\begin{cases}3x-y=2m-1\\x+2y=3m+2\end{cases}}\Leftrightarrow\hept{\begin{cases}y=3x-2m+1\\x+2\left(3x-2m+1\right)=3m+2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=3x-2m+1\\7x-4m+2=3m+2\end{cases}}\Leftrightarrow\hept{\begin{cases}y=3x-2m+1\\7x=7m\end{cases}\Leftrightarrow\hept{\begin{cases}y=m+1\\x=m\end{cases}}}\)
Vây với mọi m, hệ phương trình luôn có nghiệm duy nhất (x ; y) = (m ; m + 1)
Độ dài đoạn thẳng OM bằng: \(\sqrt{m^2+\left(m+1\right)^2}=\sqrt{2m^2+2m+1}\)
Để M thuộc đường tròn \(\left(O;\sqrt{5}\right)\) thì \(\sqrt{2m^2+2m+1}=\sqrt{5}\Leftrightarrow2m^2+2m-4=0\)
\(\Leftrightarrow\orbr{\begin{cases}m=1\\m=-2\end{cases}}\)
theo định lý đoạn thẳng ( hàm số ) đi qua gốc tọa độ thì nó có dạng y = ax
vậy nên để hằng số của bạn đi qua gốc tọa độ thì m -7 =0 tương đương m=7