\(x^2\)-x+1

chứng minh\(\forall\)n

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 12 2017

a.

f(2)-3f(2+1)=2*22

f(2) -3f*3=2*4

f(2)-9f=8

f(2)=8+9f

b.

f(-5)-3f(-5+1)=2*(-5)2

f(-5)-3f(-4)=2*25

f(-5)-(-12)f=50

f(-5)+12f=50

f(-5)=50-12f

c.

f(-2)-3f(-2+1)=2*(-2)2

f(-2)-3f(-1)=2*4

f(-2)-(-3)f=8

f(-2)+3f=8

f(-2)=8-3f

Mình vẫn chưa biết đúng hay sai nữa nha

22 tháng 12 2017

bạn phải tính ra số cụ thể cơ

Bài 1:

a)

Thay x=0 vào hàm số \(y=f\left(x\right)=2x^2-8\), ta được

\(2\cdot0^2-8=0-8=-8\)

Vậy: -8 là giá trị của hàm số \(y=f\left(x\right)=2x^2-8\) tại x=0

Thay x=-2 vào hàm số \(y=f\left(x\right)=2x^2-8\), ta được

\(2\cdot\left(-2\right)^2-8=2\cdot4-8=8-8=0\)

Vậy: 0 là giá trị của hàm số \(y=f\left(x\right)=2x^2-8\) tại x=-2

Thay x=3 vào hàm số \(y=f\left(x\right)=2x^2-8\), ta được

\(2\cdot3^2-8=2\cdot9-8=18-8=10\)

Vậy: 10 là giá trị của hàm số \(y=f\left(x\right)=2x^2-8\) tại x=3

b) Khi y=0 thì \(2x^2-8=0\)

\(\Leftrightarrow2x^2=8\)

\(\Leftrightarrow x^2=4\)

\(\Leftrightarrow x\in\left\{2;-2\right\}\)

Vậy: Khi y=0 thì \(x\in\left\{2;-2\right\}\)

c) Ta có: \(x^2\ge0\forall x\)

\(\Rightarrow2x^2\ge0\forall x\)

\(\Rightarrow2x^2-8\ge-8\forall x\)

Dấu '=' xảy ra khi \(x^2=0\Leftrightarrow x=0\)

Vậy: Giá trị nhỏ nhất của biểu thức \(F\left(x\right)=2x^2-8\) là -8 khi x=0

Bài 2:

a) Xét ΔAIB vuông tại I và ΔAIC vuông tại I có

AB=AC(ΔABC cân tại A)

AI là cạnh chung

Do đó: ΔAIB=ΔAIC(cạnh huyền-cạnh góc vuông)

⇒IB=IC(hai cạnh tương ứng)

b) Ta có: AE+EB=AB(E nằm giữa A và B)

AF+FC=AC(F nằm giữa A và C)

mà AB=AC(ΔABC cân tại A)

và AE=AF(gt)

nên EB=FC

Xét ΔEIB và ΔFIC có

EB=FC(cmt)

\(\widehat{B}=\widehat{C}\)(hai góc ở đáy của ΔABC cân tại A)

BI=CI(cmt)

Do đó: ΔEIB=ΔFIC(c-g-c)

⇒IE=IF(hai cạnh tương ứng)

Xét ΔIEF có IE=IF(cmt)

nên ΔEIF cân tại I(định nghĩa tam giác cân)

c) Xét ΔAEF có AE=AF(gt)

nên ΔAEF cân tại A(định nghĩa tam giác cân)

\(\widehat{AEF}=\frac{180^0-\widehat{A}}{2}\)(số đo của một góc ở đáy trong ΔAEF cân tại A)(1)

Ta có: ΔABC cân tại A(gt)

\(\widehat{ABC}=\frac{180^0-\widehat{A}}{2}\)(số đo của một góc ở đáy trong ΔABC cân tại A)(2)

Từ (1) và (2) suy ra \(\widehat{AEF}=\widehat{ABC}\)

\(\widehat{AEF}\)\(\widehat{ABC}\) là hai góc ở vị trí đồng vị

nên EF//BC(dấu hiệu nhận biết hai đường thẳng song song)

Ta có: EF//BC(cmt)

AI⊥BC(gt)

Do đó: EF⊥AI(định lí 2 từ vuông góc tới song song)

23 tháng 3 2020

cảm ơn bn