Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(y=f\left(x\right)=6x-1-2x\sqrt{5}+\sqrt{5}=x\left(6-2\sqrt{5}\right)+\sqrt{5}-1\)
Vì \(6-2\sqrt{5}\ne0\) nên hs bậc nhất
Ta có \(6-2\sqrt{5}=\left(\sqrt{5}-1\right)^2>0\left(6-2\sqrt{5}\ne0\right)\) nên hs đồng biến trên R
B1a) m khác 5, khác -2
b) m khác 3, m < 3
B2a) vì căn 5 -2 luôn lớn hơn 0 nên hsố trên đồng biến
b) h số trên là nghịch biến vì 2x > căn 3x
c) bạn hãy đưa h số về dạng y=ax+b là y= 1/6x+1/3 mà 1/6 >0 => h số đồng biến
Để hàm số là hàm số bậc nhất thì hệ số \(a\ne0\)
a) Cm : \(\sqrt{3-m}\ne0\Rightarrow m\ne3\)
b) \(\frac{m-5}{m+2}\ne0\Rightarrow m\ne5\)
Bài 2 :
Để hàm số đồng biến thì hệ số \(a>0\)
Để hàm số nghịch biến thì hệ số \(a< 0\)
Gợi ý z tư làm nha
Answer:
Ta có:
\(y=f\left(x\right)=6x-1-\sqrt{5}\left(2x-1\right)\)
\(=6x-1-2\sqrt{5}x+\sqrt{5}\)
\(=x.\left(6-2\sqrt{5}\right)+\left(\sqrt{5}-1\right)\)
Mà: Hàm số bậc nhất có dạng \(y=ax+b\) trong đó: \(a,b\inℝ;a\ne0\)
Ta thấy:
\(a=6-2\sqrt{5}\ne0\)
\(b=\sqrt{5}-1\inℝ\)
\(\Rightarrow x.\left(6-2\sqrt{5}\right)+\left(\sqrt{5}-1\right)\) là hàm số bậc nhất
\(\Rightarrow y=f\left(x\right)=6x-1-\sqrt{5}\left(2x-1\right)\) là hàm số bậc nhất
Ta thấy:
Hệ số \(a=6-2\sqrt{5}\)
Mà: Hàm số đồng biến khi hệ số \(a>0\) và nghịch biến khi \(a< 0\)
Thấy được:
\(6-2\sqrt{5}>0\)
\(\Rightarrow a=6-2\sqrt{5}>0\)
Vậy hàm số \(y=f\left(x\right)=6x-1-\sqrt{5}\left(2x-1\right)\) đồng biến trên \(ℝ\)