K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2015

a/ Với x ∈ [0;1] thì

\(f\left(x\right)=2\left(m-1\right)x+\frac{m\left(x-2\right)}{-\left(x-2\right)}=2\left(m-1\right)x-m\)

\(+m-1=0\Leftrightarrow m=1\text{ thì }f\left(x\right)=-1<0\text{ với mọi }x\in\left[0;1\right]\)

\(+m-1>0\Leftrightarrow m>1\text{ thì }2\left(m-1\right).0-m\le2\left(m-1\right)x-m\le2\left(m-1\right).1-m\)

\(\Rightarrow f\left(x\right)\le m-2\text{ với mọi }x\in\left[0;1\right]\)

Để f(x) < 0 thì m - 2 < 0 <=> m < 2.

Vậy 1 < m < 2.

\(+m-1<0\)\(\Leftrightarrow m<1\)thì \(2\left(m-1\right).1-m\le f\left(x\right)\le2\left(m-1\right).0-m\)

\(\Rightarrow f\left(x\right)\le-m\text{ với mọi }x\in\left[0;1\right]\)

Để f(x) < 0 thì -m < 0 <=> m > 0

Vậy 0 < m < 1.

Kết luận: \(m\in\left(0;2\right)\)

b/ đồ thị hàm số cắt trục hoành tại 1 điểm thuộc (1;2) <=> f(x) có 1 nghiệm trong khoảng (1;2)

Với x ∈ (1;2) thì \(f\left(x\right)=2\left(m-1\right)x-m\)

Xét phương trình \(2\left(m-1\right)x-m=0\)

\(+m=1\text{ thì pt thành }-1=0\text{ (vô lí)}\)

\(+\text{Xét }m\ne1.pt\Leftrightarrow x=\frac{m}{2\left(m-1\right)}\)

\(x\in\left(1;2\right)\Rightarrow2>\frac{m}{2\left(m-1\right)}>1\)

Giải bất phương trình trên để được \(\frac{4}{3}<\)\(m<2\)

Kết luận: \(m\in\left(\frac{4}{3};2\right)\)

c: Thay m=-2 vào pt, ta được:

\(x^2-2x+1=0\)

hay x=1

f: Thay x=-3 vào pt, ta được:

\(9-3m+m+3=0\)

=>-2m+12=0

hay m=6

a: Khim=0 thì (1) trở thành \(x^2-2=0\)

hay \(x\in\left\{\sqrt{2};-\sqrt{2}\right\}\)

Khi m=1 thì (1) trở thành \(x^2-2x=0\)

=>x=0 hoặc x=2

b: \(\text{Δ}=\left(-2m\right)^2-4\left(2m-2\right)\)

\(=4m^2-8m+8=4\left(m-1\right)^2>=0\)

Do đó: Phương trình luôn có hai nghiệm

NV
30 tháng 5 2020

\(\Delta=\left(2m-3\right)^2-4\left(m^2-3m\right)=9>0;\forall m\)

\(\Rightarrow\) Pt đã cho luôn có 2 nghiệm pb

Do \(x_1< x_2\Rightarrow\left\{{}\begin{matrix}x_1=\frac{2m-3-\sqrt{9}}{2}=m-3\\x_2=\frac{2m-3+\sqrt{9}}{2}=m\end{matrix}\right.\)

\(\Rightarrow0< m-3< m< 5\)

\(\Rightarrow3< m< 5\)

7 tháng 7 2015

bạn cap cả bài nhìn đau mắt gê :3

7 tháng 7 2015

a) Thay \(m=-5\) vào PT ta được:

\(x^2-\left(-5\right)x+2.\left(-5\right)-3=0\)

\(\Rightarrow x^2+5x-10-3=0\)

\(\Rightarrow x^2+5x-13=0\)

\(\Delta=5^2-4.1.\left(-13\right)=25+52=77>0\)

PT có 2 nghiệm phân biệt:

\(x_1=-\frac{5+\sqrt{77}}{2}\)

\(x_2=-\frac{5-\sqrt{77}}{2}\)

Vậy với m = -5 thì PT có nghiệm là \(S=\left\{-\frac{5+\sqrt{77}}{2};-\frac{5-\sqrt{77}}{2}\right\}\)

b) PT có nghiệm kép \(\Leftrightarrow\Delta=0\Leftrightarrow\left(-m\right)^2-4.1.\left(2m-3\right)=0\)

\(\Leftrightarrow m^2-8m+12=0\Leftrightarrow\left(m-2\right)\left(m-6\right)=0\)

\(\Leftrightarrow\int^{m-2=0}_{m-6=0}\Leftrightarrow\int^{m=2}_{m=6}\)

Vậy với m = 2 và m = 6 thì PT có nghiệm kép.

c) PT có 2 nghiệm trái dấu \(\Leftrightarrow\int^{\Delta>0}_{2m-3<0}\Leftrightarrow\int^{m>6}_{m<\frac{3}{2}}\)(vô lí)

Vậy không có giá trị nào của m thỏa mãn PT có 2 nghiệm trái dấu.

d) Ta có: \(S=x_1+x_2=-\frac{b}{a}=-\frac{\left(-m\right)}{1}=m\)

\(\Rightarrow m=S^{\left(1d\right)}\)

              \(P=x_1x_2=\frac{c}{a}=\frac{2m-3}{1}=2m-3\)

\(\Rightarrow2m-3=P\Rightarrow2m=P+3\Rightarrow m=\frac{P+3}{2}^{\left(2d\right)}\)

Từ \(\left(1d\right)\&\left(2d\right)\)

\(\Rightarrow S=\frac{P+3}{2}\Rightarrow2S=P+3\)

\(\Rightarrow P+3-2S=0\)

\(\Rightarrow x_1x_2+3-2\left(x_1+x_2\right)=0\)

\(\Rightarrow x_1x_2-2x_1-2x_2+3=0\)

Đây là hệ thức giữa 2 nghiệm không phụ thuộc vào m.

e) PT có 2 nghiệm phân biệt \(\Leftrightarrow\Delta>0\Leftrightarrow m>6\)

26 tháng 3 2019

1.a

ta có: \(\Delta'=m^2-\left(m-1\right)\left(m+1\right)\)

 = m^2-m^2+1=1>0

vậy pt luôn có 2 no vs mọi m

26 tháng 3 2019

a)\(\Delta=m^2-\left(m+1\right)\left(m-1\right)=m^2-m^2+1=1\)

Vậy pt luôn có 2 nghiệm với mọi m

b)

Theo hệ thức Vi ét ,ta có:

\(\hept{\begin{cases}x_1+x_2=\frac{2m}{m-1}\\x_1\cdot x_2=\frac{m+1}{m-1}=1+\frac{2}{m-1}\end{cases}}\)

mà \(\frac{m+1}{m-1}=5\Rightarrow m=1,5\)

vậy \(x_1\cdot x_2=\frac{2m}{m-1}=6\)

\(\hept{\begin{cases}x_1+x_2=\frac{2m}{m-1}=2+\frac{2}{m-1}\\x_1\cdot x_2=\frac{m+1}{m-1}=1+\frac{2}{m-1}\end{cases}}\)

\(\Rightarrow x_1+x_2-x_1\cdot x_2=2+\frac{2}{m-1}-1-\frac{2}{m-1}=1\)

c)

\(\frac{x_1}{x_2}+\frac{x_2}{x_1}+\frac{5}{2}=0\Rightarrow\frac{x_1^2+x_2^2+2x_1x_2+3x_1x_2}{2x_1x_2}=0\Rightarrow\left(x_1+x_2\right)^2+3x_1x_2=0\)

\(\Leftrightarrow\left(\frac{2m}{m-1}\right)^2+\frac{3\left(m+1\right)}{m-1}=0\Rightarrow m=\pm\sqrt{\frac{3}{7}}\)

22 tháng 4 2016

ai làm có thưởng 2điem