Cho hàm số  y=f(x) liên tục trên ℝ  và có đồ thị...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2018

Phương pháp:

Sử dụng cách đọc đồ thị hàm số.

Cách giải:

Từ đồ thị hàm số ta thấy

+ Đồ thị đi xuống trên khoảng 0;1

nên Hàm số nghịch biến trên

khoảng 0;1. Do đó (I) đúng

+ Đồ thị đi lên trên khoảng 1;0,

 đi xuống trên khoảng 0;1và đi

lên trên khoảng 1;2 nên trên

khoảng 1;2 hàm số không

hoàn toàn đồng biến. Do đó (II) sai.

+ Đồ thị hàm số có ba điểm hai

điểm cực tiểu và một điểm cực

đại nên (III) đúng.

+ Giá trị lớn nhất của hàm số là

tung độ của điểm cao nhất của đồ

thị hàm số nên (IV) sai.

Như vậy ta có hai mệnh đề đúng

là (I) và (III).

Chọn B.

31 tháng 10 2017

Mệnh đề đúng là (I) và (III).

Chọn B.

31 tháng 3 2017

y = 2x2 + 2mx + m -1 (Cm). Đây là hàm số bậc hai, đồ thị là parabol quay bề lõm lên phía trên.

a) m = 1 ⇒ y = 2x2 + 2x

Tập xác định D = R

\(\lim\limits_{x\rightarrow+\infty}y\left(x\right)=\lim\limits_{x\rightarrow-\infty}=+\infty\)

Bảng biến thiên:

Đồ thị hàm số:

b) Tổng quát y = 2x2 + 2mx + m -1 có tập xác định D = R

y′=4x+2m=0⇔\(x=-\dfrac{m}{2}\).

Suy ra y’ > 0 với \(x>-\dfrac{m}{2}\)  và \(y'< 0\)  với \(x< -\dfrac{m}{2}\) tức là hàm số nghịch biến trên \(\left(-\infty;\dfrac{-m}{2}\right)\) và đồng biến trên \(\left(-\dfrac{m}{2};+\infty\right)\)

i) Để hàm số đồng biến trên khoảng (-1, +∞) thì phải có điều kiện (−1,+∞)∈(−\(\dfrac{m}{2}\),+∞)
Hay  \(-\dfrac{m}{2}< -1\)\(\Leftrightarrow m>2\)

ii) Hàm số đạt cực trị tại  \(x=\dfrac{m}{2}\)

Để hàm số đạt cực trị trong khoảng (-1, +∞), ta phải có:

\(-\dfrac{m}{2}\in\left(-1;+\infty\right)\) hay \(-\dfrac{m}{2}>-1\Leftrightarrow m< 2\).

c) (Cm) luôn cắt Ox tại hai điểm phân biệt 

⇔ phương trình 2x2 + 2mx + m – 1 = 0 có hai nghiệm phân biệt.

Ta có:

Δ’ = m2 – 2m + 2 = (m-1)2 + 1 > 0 ∀m

Vậy (Cm) luôn cắt O x tại hai điểm phân biệt.

26 tháng 4 2016

Ta có \(y'=3\left(x^2-m\right)\Rightarrow y'=0\Leftrightarrow x^2=m\)

Hàm số có 2 cực trị khi và chỉ khi \(m>0\). Khi đó tọa độ 2 điểm A, B là :

\(A\left(\sqrt{m}'-2m\sqrt{m}\right);B\left(-\sqrt{m};2m\sqrt{m}+2\right)\)

Suy ra \(\overrightarrow{AB}=\left(-2\sqrt{m};4m\sqrt{m}\right)\Rightarrow\overrightarrow{n}\left(2m;1\right)\) là vecto pháp tuyến của AB

Phương trình AB : 2mx + y -2 = 0

Suy ra \(d\left(I,AB\right)=\frac{\left|2m-1\right|}{\sqrt{1-4m^2}},AB=2\sqrt{m}.\sqrt{1+4m^2}\)

Do đó \(S_{\Delta IAB}=\frac{1}{2}.AB.d\left(I,AB\right)=\sqrt{m}\left|2m-1\right|\)

Mà \(S_{\Delta IAB}=\sqrt{18}\Rightarrow\sqrt{m}\left|2m-1\right|=\sqrt{18}\Rightarrow4m^3-4m^2+m-18=0\Leftrightarrow m=2\)

Vậy m = 2 là giá trị cần tìm

31 tháng 3 2017

a) y = f(x) = x3 – 3mx2 + 3(2m-1)x + 1

Tập xác định: D = R

y’= 3x2 -6mx + 3(2m-1) = 3(x2 – 2mx + 2m – 1)

Hàm số đồng biến trên D = R ⇔ y’ ≥ 0, ∀x ∈ R

⇔ x2 – 2mx + 2m - 1≥0, ∀x ∈ R

⇔ Δ’ = m2 – 2m + 1 = (m-1)2 ≤ 0 ⇔ m =1

b) Hàm số có một cực đại và một cực tiểu

⇔ phương trình y’= 0 có hai nghiệm phân biệt

⇔ (m-1)2 > 0 ⇔ m≠1

c) f’’(x) = 6x – 6m > 6x

⇔ -6m > 0 ⇔ m < 0



Câu 1: Cho a, b, c là ba số dương thỏa mãn điều kiện a, b và ab cùng khác 1. Trong các khẳng định sau, khẳng định nào đúng?\(A.log_{ab}c=\frac{log_ac+log_bc}{log_ac.log_bc}.\)                              \(B.log_{ab}c=\frac{log_ac.log_bc}{log_ac+log_bc}.\)\(C.log_{ab}c=\frac{\left|log_ac-log_bc\right|}{log_ac.log_bc}.\)                              \(D.log_{ab}c=\frac{log_ac.log_bc}{\left|log_ac-log_bc\right|}.\)Câu 2: Xét hàm...
Đọc tiếp

Câu 1: Cho a, b, c là ba số dương thỏa mãn điều kiện a, b và ab cùng khác 1. Trong các khẳng định sau, khẳng định nào đúng?

\(A.log_{ab}c=\frac{log_ac+log_bc}{log_ac.log_bc}.\)                              \(B.log_{ab}c=\frac{log_ac.log_bc}{log_ac+log_bc}.\)

\(C.log_{ab}c=\frac{\left|log_ac-log_bc\right|}{log_ac.log_bc}.\)                              \(D.log_{ab}c=\frac{log_ac.log_bc}{\left|log_ac-log_bc\right|}.\)

Câu 2: Xét hàm số \(f\left(x\right)=-x^4+4x^2-3.\)Khẳng định nào sau đây đúng?

A. Hàm số đồng biến trong khoảng \(\left(-\infty;\sqrt{2}\right).\)

B. Hàm số đồng biến trong khoảng \(\left(-\sqrt{2};+\infty\right).\)

C. Hàm số đồng biến trong từng khoảng \(\left(-\infty;-\sqrt{2}\right)\)và \(\left(0;\sqrt{2}\right).\)

D. Hàm số đồng biến trong từng khoảng \(\left(-\sqrt{2};0\right)\)và \(\left(\sqrt{2};+\infty\right)\)

1
22 tháng 6 2019

Lần sau em đăng trong h.vn

1. \(log_{ab}c=\frac{1}{log_cab}=\frac{1}{log_ca+log_cb}=\frac{1}{\frac{1}{log_ac}+\frac{1}{log_bc}}=\frac{1}{\frac{log_ac+log_bc}{log_ac.log_bc}}=\frac{log_ac.log_bc}{log_ac+log_bc}\)

Đáp án B: 

2. \(f'\left(x\right)=-4x^3+8x\)

\(f'\left(x\right)=0\Leftrightarrow-4x^3+8x=0\Leftrightarrow x=0,x=\sqrt{2},x=-\sqrt{2}\)

Có BBT: 

x -căn2 0 căn2 f' f 0 0 0 - + - +

Nhìn vào bảng biên thiên ta có hàm số ... là đáp án C

18 tháng 5 2019

Chọn D 

Xét hàm số 7af1T2CY4XHS.png.

RfalekgBUBaQ.png

aOczkEfJV1tj.pngaYsNDSzljTNQ.pngUF4yJOb1ogrC.png .

Ta lại có vju5Wc54jwqj.png thì 2jID4em9PkCG.png. Do đó JJhodGy51kPs.png thì cpGrriJgA2st.png.

mKebe5ZmHFD3.png thì sVT7jOs2C3uY.png. Do đó ZOYccuvVqHx0.png thì em9kxGoiS0pR.png.

Từ đó ta có bảng biến thiên của RAaomOLuvBkQ.png như sau

xoOsqe6siFZ5.png

Dựa vào bảng biến thiên, ta có

I. Hàm số lETzJPTAVdaj.png có 3 điểm cực trị . LÀ MỆNH ĐỀ ĐÚNG.

II. Hàm số WSPSO9eIJto5.pngđạt cực tiểu tại NL61oX2gG0Wp.png LÀ MỆNH ĐỀ SAI.

III. Hàm số Fh39qRlZRctR.pngđạt cực đại tại w8N78QnsGhAX.png LÀ MỆNH ĐỀ SAI.

IV. Hàm số id6pIDtshz1U.png đồng biến trên khoảng beFLyJnBXW09.png LÀ MỆNH ĐỀ ĐÚNG.

V. Hàm số zWoaI9WQVqcA.png nghịch biến trên khoảng I8Y5Xke6XPDp.png LÀ MỆNH ĐỀ SAI.

 

Vậy có hai mệnh đề đúng.

21 tháng 12 2020

ở chỗ x<1=> x= -2 thì sao bạn ơi =>(x^2 -3) =1 >0 thì sao f ' (...)>0 được ????