K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 4 2016

Bài 2 

a) 4^100 = (2^2)^100= 2^200

Mà 2^202 > 2^200 => 4^100 < 2^202                          

b)Ta có: 31^5 <32^5 = (2^5)^5 = 2^25       (1)

               17^7 > 16^7= (2^4)^7= 2^28        (2)

                Từ (1) và (2) => 31^5<17^7

5 tháng 10 2015

hoành độ giao điểm là nghiệm của pt

\(x^3-3mx^2+3\left(2m-1\right)x+1=2mx-4m+3\Leftrightarrow x^3-3mx^2+4mx-3x-2+4m=0\Leftrightarrow x^3-3x-2-m\left(3x^2-4x+4\right)=0\)

giải hệ pt ta có \(C_m\) luôn đi qua điểm A là nghiệm của hệ pt sau

\(\begin{cases}3x^2-4x+4=0\\x^3-3x-2=0\end{cases}\)

ta đc điều phải cm

27 tháng 10 2019

.

1 tháng 4 2016

Cho hàm số y=x33m2x2+m. Tìm m

để đồ thị hàm số có cực đại, cực tiểu.

  1. m0
  2. m>0 (chọn câu này là thành câu trắc nghiệm hoàn chỉnh nhé hoc24)
  3. m<0
  4. m=0

Cho em hỏi em có được 3GP không ạ !

3 tháng 10 2015

ta có:

\(\lim\limits_{x\rightarrow0}\frac{5^x-1}{20^x-1}=\lim\limits_{x\rightarrow0}\frac{\ln5.5^x}{\ln20.20^x}=\frac{ln5}{ln20}\)

21 tháng 3 2016

Ta có:

\(f\left(1\right).f\left(-1\right)=\left(a+b\right).\left(-a+b\right)\)

\(\Rightarrow\left(a+b\right)\left(-a+b\right)=\left(a+b\right)^2\)

\(\Rightarrow-a+b=a+b\)

\(\Rightarrow a=-a\)

\(a\ne0\) thì làm sao có a thỏa mãn được?

21 tháng 3 2016

Trần Thùy Dung ko biết thì đừng có làm. 5 - 3a - 3b = 5. Bài này trong violympic.

23 tháng 3 2016

c1:Ta có: v50>v49=7 ; v26>v25=5

nên v50+v26+1>7+5+1=13

v169>v168 hay 13>v168

Do đó, v50+v26+1>v168

c2:chắc thiếu đề r bn à

1 tháng 1 2020

c1:

ta có: √50>√49=7;√26>25=5

➜√50+√26+1>7+5+1=13=√169>√168

Vậy √50+√26+1>√168

28 tháng 2 2016

a/ f(x) = 0 => x2 + 4x - 5 = 0 => (x - 1)(x + 5) = 0 => x = 1 hoặc x = -5

      Vậy x = 1 , x = -5

b/ f(x) > 0 => x2 + 4x - 5 > 0 => (x - 1)(x + 5) > 0 => x - 1 > 0 và x + 5 > 0 => x > 1 và x > -5 => x > 1 

                                                                          hoặc x - 1 < 0 và x + 5 < 0 => x < 1 và x < -5 => x < -5

      Vậy x > 1 hoặc x < -5

c/ f(x) < 0 => x2 + 4x - 5 < 0 => (x - 1)(x + 5) < 0 => x - 1 > 0 và x + 5 < 0 => x > 1 và x < -5 => vô lí

                                                                          hoặc x - 1 < 0 và x + 5 > 0 => x < 1 và x > -5 => -5 < x < 1

      Vậy -5 < x < 1

4 tháng 2 2016

\(\frac{x-4}{y-3}=\frac{4}{3}\Rightarrow\frac{x-4}{4}=\frac{y-3}{3}\)

Áp dụng TC của DTSBN ta có:

\(\frac{x-4}{4}=\frac{y-3}{3}=\frac{x-4-y+3}{4-3}=\frac{5-1}{1}=4\)

Suy ra: (x-4)/4=4 =>x-4=16=>x=20

(y-3)/3=4=>y-3=12=>x=15

5 tháng 2 2016

x-4/y-3=4/3

=>3.(x-4)=4.(y-3)

=>3x-12=4y-12

=>3x=4y

Mà x-y=5=>x=y+5

=>3.(y+5)=4y

=>3y+15=4y=>4y-3y=15=>y=15

 Khi đó x=15+5=20

 Vậy x=20;y=15

11 tháng 1 2017

Từ \(f\left(x\right)+f\left(\frac{1}{x}\right)=x^2\); lần lượt thay \(x=2\)\(x=\frac{1}{2}\) vào, ta có:

\(f\left(2\right)+3f\left(\frac{1}{2}\right)=4\)\(f\left(\frac{1}{2}\right)+3f\left(2\right)=\frac{1}{4}\Leftrightarrow3f\left(2\right)+f\left(\frac{1}{2}\right)=\frac{1}{4}\)

Giải hệ phương trình với 2 ẩn \(f\left(2\right)\)\(f\left(\frac{1}{2}\right)\)

Tìm được \(f\left(2\right)=\frac{-13}{32}\)

12 tháng 1 2017

Ta có \(f\left(x\right)+3f\left(\frac{1}{x}\right)=x^2\) (1)

Thay \(x\rightarrow\frac{1}{x}\) được \(f\left(\frac{1}{x}\right)+3f\left(x\right)=\frac{1}{x^2}\)

\(\Leftrightarrow3f\left(\frac{1}{x}\right)+9f\left(x\right)=\frac{3}{x^2}\) (2)

Lấy (2) trừ (1) theo vế : \(8f\left(x\right)=\frac{3}{x^2}-x^2\)

\(\Leftrightarrow f\left(x\right)=\frac{1}{8}\left(\frac{3}{x^2}-x^2\right)\)

Vậy f(2) = -13/32