Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt . Giả sử x > 0, ta có :
Do đó hàm số không có đạo hàm tại x = 0 . Tuy nhiên hàm số đạt cực tiểu tại x = 0 vì .
Hàm số đạt cực đại tại x = 2 và đạt giá trị cực đại tại y = 2
Đáp án cần chọn là D
Phương trình tiếp tuyến tại M0 có dạng: y = k(x – x0) + y0 (*)
Với x0 là hoành độ tiếp điểm;
Với y0 = f(x0) là tung độ tiếp điểm;
Với k = y’(x0) = f’(x0) là hệ số góc của tiếp tuyến.
Để viết được phương trình tiếp tuyến ta phải xác định được x0; y0 và k
a) TXĐ: D = [0; + \(\infty\))
\(y'=1+\frac{1}{2\sqrt{x}}\) > 0 với mọi x thuộc D
BBT: x y' y 0 +oo + 0 +oo
Từ BBT => Hàm số đồng biến trên D ;
y đạt cực tiểu bằng 0 tại x = 0
Hàm số không có cực đại
b) TXĐ : D = = [0; + \(\infty\))
\(y'=1-\frac{1}{2\sqrt{x}}\)
\(y'=0\) <=> \(2\sqrt{x}=1\) <=> \(x=\frac{1}{4}\)
x y' y 0 +oo + 0 +oo -1/4 1/4 0 -
Từ BBT: Hàm số đồng biến trên (1/4; + \(\infty\)); nghịch biến trên (0;1/4)
Hàm số đạt cực tiểu = -1/4 tại x = 1/4
Hàm số không có cực đại
Đáp án D
Phương pháp:
Quan sát bảng biến thiên, tìm điểm mà f’(x)=0 hoặc f’(x) không xác định.
Đánh giá giá trị của f’(x) và chỉ ra cực đại, cực tiểu của hàm số y = f(x):
- Cực tiểu là điểm mà tại đó f’(x) đổi dấu từ âm sang dương.
- Cực đại là điểm mà tại đó f’(x) đổi dấu từ dương sang âm.
Cách giải:
Quan sát bảng biến thiên, ta thấy: Hàm số y = f(x) đạt cực đại tại x = 0
+TXĐ: X\(\in\)R
+y'=\(3x^2-6x\Rightarrow y'=0\Leftrightarrow\int_{x=2;y=0}^{x=0;y=4}\)
+y''=6(x-1)=> y' = 0 khi x = 1;y=2
+
x | -\(\infty\) 0 1 2 +\(\infty\) |
y' | + 0 - - 0 + |
y |