Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a:
b: Vì a=-1,5<0 nên hàm số đồng biến khi x<0 và nghịch biến khi x>0
=>f(-1,5)< f(-0,5) và f(0,75)>f(1,5)
- Khi 1 ≤ x ≤ 2 thì -6 ≤ y ≤ -1,5 ;
- Khi -2 ≤ x ≤ 0 thì -6 ≤ y ≤ 0 ;
- Khi -2 ≤ x ≤ 1 thì -6 ≤ y ≤ 0.
\(f\left(x\right)=ax^2+bx+c=>\hept{\begin{cases}f\left(1\right)=a+b+c\\f\left(0\right)=c\\f\left(-1\right)=a-b+c\end{cases}.}\)
xét các Th
Th1)a,b,c cùng dấu :
=>/a/+/b/+/c/=/a+b+c/=/f(x)/<=1
Th2)a khác dấu với b,c
=>/a/+/b/+/c/=/-a+b+c/=/2f(0)-f(-1)/=2/f(0)/+/f(-1)/<=3
th3)b khác dấu với a,c
=>/a/+/b/+/c/=/a-b+c/=/f(-1)/<=1
th4) c khác dấu với a,b
=>/a/+/b/+/c/=/a+b-c/=/f(1)-2f(0)/=/f(1)/+2/f(0)/<=3
vậy /a/+/b/+/c/<=3
dấu = xảy ra khi ...
a/ \(\frac{1}{1+x}+\frac{1}{1+y}\le\frac{2}{1+\sqrt{xy}}\)
\(\Leftrightarrow\left(1+x\right)\left(1+\sqrt{xy}\right)+\left(1+y\right)\left(1+\sqrt{xy}\right)-2\left(1+x\right)\left(1+y\right)\le0\)
\(\Leftrightarrow x\sqrt{xy}+2\sqrt{xy}+y\sqrt{xy}-x-y-2xy\le0\)
\(\Leftrightarrow\sqrt{xy}\left(x-2\sqrt{xy}+y\right)-\left(x-2\sqrt{xy}+y\right)\le0\)
\(\Leftrightarrow\left(\sqrt{x}-\sqrt{y}\right)^2\left(\sqrt{xy}-1\right)\le0\) đúng vì \(x,y\le1\)
b/ Vì \(\hept{\begin{cases}0\le x\le y\le z\le t\\yt\le1\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}xz\le1\\yt\le1\end{cases}}\)
Áp dụng câu a ta được
\(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}+\frac{1}{1+t}\le\frac{2}{1+\sqrt{xz}}+\frac{2}{1+\sqrt{yt}}\le\frac{4}{1+\sqrt[4]{xyzt}}\)
bạn ấn vào đúng 0 sẽ ra kết quả, mình giải được rồi dễ lắm