Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(y=f\left(x\right)=\frac{1}{2x-2}\)
Để \(y=f\left(x\right)\)xác định => \(2x-2\ne0\)
=> \(2x\ne2\)
=> \(x\ne1\)
Ta có : \(y=f\left(x\right)=2x^2-3x+1\)
\(f\left(-1\right)=2\left(-1\right)^2-3.\left(-1\right)+1=2.1-\left(-3\right)+1=2+3+1=6\)
\(f\left(2\right)=2.2^2-3.2+1=2.4-6+1=8-6+1=3\)
\(f\left(\frac{-1}{2}\right)=2\left(\frac{1}{2}\right)^2-3.\frac{1}{2}+1=2.\frac{1}{4}-\frac{3}{2}+1=\frac{1}{2}-\frac{3}{2}+\frac{2}{2}=0\)
4. (3/4-81)(3^2/5-81)(3^3/6-81)....(3^6/9-81).....(3^2011/2014-81)
mà 3^6/9-81=0 => (3/4-81)(3^2/5-81)....(3^2011/2014-81)=0
\(f\left(243\right)=f\left(3\cdot81\right)=-2\cdot f\left(3\cdot27\right)=4\cdot f\left(3\cdot9\right)=-8\cdot f\left(3\cdot3\right)=16\cdot\left(-2\right)=-32\)
a) ĐK: \(x\left(x-2\right)\ne0\Leftrightarrow\hept{\begin{cases}x\ne0\\x\ne2\end{cases}}\)
TXĐ: \(D=R\backslash\left\{0;2\right\}\)
b) ĐK : \(\hept{\begin{cases}x^2-x\ne0\\x-1\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\left(x-1\right)\ne0\\x\ne1\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ne0\\x\ne1\end{cases}}}\)
TXĐ : \(D=R\backslash\left\{0;1\right\}\)
Lời giải:
Để hàm số $f(x)$ xác định thì:
$3x-2\neq 0$
Hay $x\neq \frac{2}{3}$