Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left\{{}\begin{matrix}f\left(0\right)=2014\Rightarrow c=2014\left(1\right)\\f\left(1\right)=2015\Rightarrow a+b+c=2015\left(2\right)\\f\left(-1\right)=2017\Rightarrow a-b+c=2017\left(3\right)\end{matrix}\right.\)
\(f\left(-2\right)=4a-2b+c\)
Lấy (3) nhân 3 công (2) trừ (1) nhân 2
\(f\left(-2\right)=4a-2b+c=3.2017+2015-3.2014\)
\(f\left(-2\right)=3\left(2017-2014\right)+2015=2024\)
f(0)=a0+b0+c=2010
=>c=2010
f(1)=a1+b1+c=a1+b1+2010
=>a+b=1 (1)
f(-1)=a1+(-b1)+c=a1-b1+2010
=>a-b=2 (2)
Từ (1) và (2) => a=(2+1):2=1,5
b=(1-2):2=-0,5
Vậy f(2)=1,5.2+(-0,5)x2+2010=2014
\(f\left(-1\right)=-a+b-c+d=2\)
\(f\left(0\right)=d=1\)
\(f\left(\frac{1}{2}\right)=\frac{1}{8}a+\frac{1}{4}b+\frac{1}{2}c+d=3\)
\(f\left(1\right)=a+b+c+d=7\)
Suy ra \(\hept{\begin{cases}-a+b-c=1\\\frac{1}{8}a+\frac{1}{4}b+\frac{1}{2}c=2\\a+b+c=6\end{cases}}\Leftrightarrow\hept{\begin{cases}2b=7\\\frac{1}{8}a+\frac{1}{4}b+\frac{1}{2}c=2\\a+b+c=6\end{cases}}\Leftrightarrow\hept{\begin{cases}a=\frac{1}{3}\\b=\frac{7}{2}\\c=\frac{13}{6}\end{cases}}\)
Ta có \(f\left(1\right)=a+b+c\) và \(f\left(-1\right)=a-b+c\)
Vì \(f\left(1\right)=f\left(-1\right)\) nên \(a+b+c=a-b+c\Rightarrow b=0\)
\(f\left(x\right)=ax^2+bx+c=ax^2+c\)
\(f\left(-x\right)=ax^2-bx+c=ax^2+c\)
Vậy \(f\left(x\right)=f\left(-x\right)\)
a) theo tính chất ta có: f(0+0)= f(0)+f(0)
=> f(0)=f(0)+f(0)
=> f(0)-f(0)=f(0)+f(0)-f(0)
=> 0=f(0)
hay f(0)=0
b) f(0)=f(-x+x)=f(-x)+f(x)
=>0=f(-x)+f(x)
=> f(-x)=0-f(x)=-f(x)
c) \(f\left(x_1-x_2\right)=f\left(x_1+\left(-x_2\right)\right)=f\left(x_1\right)+f\left(-x_2\right)=f\left(x_1\right)-f\left(x_2\right)\)