Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
f(-2).f(3) = (4a-2b+c).(9a+3b+c)
= (4a-2b+c).(13a+b+2c-(4a-2b+c))
Mà 13a+b+2c = 0 theo giả thiết
=> f(-2).f(3) = -[(4a-2b+c)^2]
Có (4a-2b+c)^2 luôn >= 0 => f(-2).f(3) luôn nhỏ hơn hoặc bằng 0
\(f\left(x\right)=ax^2+bx+c\)
Ta có : \(f\left(-2\right)=4a-2b+c\)
\(f\left(3\right)=9a+3b+c\)
\(\Rightarrow\) \(f\left(-2\right)+f\left(3\right)=4a-2b+c+9a+3b+c\)
\(=13a+b+c\)
\(=0\)
\(\Rightarrow\) \(-f\left(-2\right)=f\left(3\right)\)
\(\Rightarrow\) \(f\left(-2\right).f\left(3\right)=f\left(-2\right).-f\left(-2\right)=-\left[f\left(-4\right)\right]^2\le0\)
\(\Rightarrow\) \(đpcm\)
Study well ! >_<
\(f\left(-2\right)=a.\left(-2\right)^2+b.\left(-2\right)+c=4a-2b+c\)
\(f\left(3\right)=a.3^2+b.3+c=9a+3b+c\)
\(f\left(-2\right)+f\left(3\right)=13a+b+2c=0\)
\(\Rightarrow f\left(-2\right)=-f\left(3\right)\Rightarrow f\left(-2\right).f\left(3\right)\le0\)
Ta có \(f\left(-2\right).f\left(3\right)=\left(4a-2b+c\right)\left(9a+3b+c\right)\)
\(=36a^2-6b^2+c^2-6ab+13ac+bc\)
Thay b = - 13a - 2c, ta có
\(36a^2-6\left(-13a-2c\right)^2+c^2-6a\left(-13a-2c\right)+13ac+\left(-13a-2c\right)c\)
\(=-900a^2-300ac-25c^2=-25\left(36a^2+12ac+c^2\right)\)
\(-25\left(6a+c\right)^2\le0\forall a;c\)
Vậy nên \(f\left(-2\right).f\left(3\right)\le0\)
Cách này đơn giản hơn: Có \(f\left(-2\right)=4a-2b+c;f\left(3\right)=9a+3b+c\)
Do đó \(f\left(-2\right)+f\left(3\right)=13a+b+2c=0\) (theo giả thiết). Từ đó \(f\left(-2\right)=-f\left(3\right)\) nên
\(f\left(-2\right)f\left(3\right)=-f^2\left(3\right)\le0\)
Ta có: \(f\left(x\right)=ax^2+bx+c\)
\(\Rightarrow f\left(-2\right)=4a-2b+c\)
\(f\left(3\right)=9a+3b+c\)
\(\Rightarrow f\left(-2\right)+f\left(3\right)=13a+b+2c=0\)(vì 13a+b+2c=0)
\(\Rightarrow f\left(-2\right)=-f\left(3\right)\)
\(\Rightarrow f\left(-2\right).f\left(3\right)=-\left[f\left(-2\right)\right]^2\le0\)( đpcm)