\(y=f\left(x\right)=2-2x^2\)

Hãy khoanh tròn chữ cái đứng trước khẳng...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 7 2017

mình làm lại câu b) nha

b) |x-3|=-4

th1: x-3=-4

x=3+(-4)

x=-1

th2: x-3=4

x=3+4

x=7

24 tháng 7 2017

b) \(\left|x-3\right|=-4\)

t/h1:\(x-3=-4\)

\(x=3-\left(-4\right)\)

\(x=7\)

t/h2:\(x-3=4\)

\(x=3-4\)

\(x=-1\)

18 tháng 4 2017

Hàm số y = f(x) = 1 – 8x

a) f(-1) = 1 - 8.(-1) = 1 + 8 => Khẳng định f(-1) = 9 đúng

b) f(12)=1−8.12=1−4=−3f(12)=1−8.12=1−4=−3

=> Khẳng định f(12)=−3f(12)=−3 đúng

c) f(3) = 1 - 8. 3 = 1 - 24 = -23 => Khẳng định f(3) = 25 sai


18 tháng 4 2017

y = f (x) = 1 - 8x
a) f (-1) = 1 - 8.(-1) = 1 - (-8) = 1+8 = 9

Vậy khẳng định f (-1) = 9 là đúng

b) f \(\left(\dfrac{1}{2}\right)\) = 1 - 8. \(\dfrac{1}{2}\) = 1 - 4 = -3

Vậy khẳng định f \(\left(\dfrac{1}{2}\right)\) = -3 là đúng

c) f (3) = 1 - 8 .3 = 1 - 24 = -23

Vậy khẳng định f (3) = 25 là sai

AH
Akai Haruma
Giáo viên
29 tháng 7 2018

a)

Ta thấy \(\left\{\begin{matrix} |x+\frac{19}{5}|\geq 0\\ |y+\frac{1890}{1975}|\geq 0\\ |z-2005|\geq 0\end{matrix}\right., \forall x,y,z\in\mathbb{Z}\)

\(|x+\frac{19}{5}|+|y+\frac{1890}{1975}|+|z-2005|\geq 0\)

Do đó, để \(|x+\frac{19}{5}|+|y+\frac{1890}{1975}|+|z-2005|=0\) thì :

\(\left\{\begin{matrix} |x+\frac{19}{5}|= 0\\ |y+\frac{1890}{1975}|= 0\\ |z-2005|=0\end{matrix}\right.\Rightarrow x=\frac{-19}{5}; y=\frac{-1890}{1975}; z=2005\)

b) Giống phần a, vì trị tuyệt đối của một số luôn không âm nên để tổng các trị tuyệt đối bằng $0$ thì:

\(\left\{\begin{matrix} |x+\frac{3}{4}|=0\\ |y-\frac{1}{5}|=0\\ |x+y+z|=0\end{matrix}\right.\Rightarrow \left\{\begin{matrix} x=-\frac{3}{4}\\ y=\frac{1}{5}\\ z=-(x+y)=\frac{11}{20}\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
29 tháng 7 2018

c) \(\frac{16}{2^x}=1\Rightarrow 16=2^x\)

\(\Leftrightarrow 2^4=2^x\Rightarrow x=4\)

d) \((2x-1)^3=-27=(-3)^3\)

\(\Rightarrow 2x-1=-3\)

\(\Rightarrow 2x=-2\Rightarrow x=-1\)

e) \((x-2)^2=1=1^2=(-1)^2\)

\(\Rightarrow \left[\begin{matrix} x-2=1\\ x-2=-1\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=3\\ x=1\end{matrix}\right.\)

f) \((x+\frac{1}{2})^2=\frac{4}{25}=(\frac{2}{5})^2=(\frac{-2}{5})^2\)

\(\Rightarrow \left[\begin{matrix} x+\frac{1}{2}=\frac{2}{5}\\ x+\frac{1}{2}=-\frac{2}{5}\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{-1}{10}\\ x=\frac{-9}{10}\end{matrix}\right.\)

g) \((x-1)^2=(x-1)^6\)

\(\Leftrightarrow (x-1)^6-(x-1)^2=0\)

\(\Leftrightarrow (x-1)^2[(x-1)^4-1]=0\)

\(\Rightarrow \left[\begin{matrix} (x-1)^2=0\\ (x-1)^4=1=(-1)^4=1^4\end{matrix}\right.\)

\(\Rightarrow \left[\begin{matrix} x=1\\ \left[\begin{matrix} x-1=-1\\ x-1=1\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow \left[\begin{matrix} x=1\\ \left[\begin{matrix} x=0\\ x=2\end{matrix}\right.\end{matrix}\right.\)

Vậy \(x=\left\{0;1;2\right\}\)

27 tháng 11 2022

b: =>(3x-1)(3x+1)(2x+3)=0

hay \(x\in\left\{\dfrac{1}{3};-\dfrac{1}{3};-\dfrac{3}{2}\right\}\)

c: \(\Leftrightarrow\left|2x-\dfrac{1}{3}\right|=\dfrac{5}{6}+\dfrac{3}{4}=\dfrac{19}{12}\)

=>2x-1/3=19/12 hoặc 2x-1/3=-19/12

=>2x=23/12 hoặc 2x=-15/12=-5/4

=>x=23/24 hoặc x=-5/8

d: \(\Leftrightarrow-\dfrac{5}{6}\cdot x+\dfrac{3}{4}=-\dfrac{3}{4}\)

=>-5/6x=-3/2

=>x=3/2:5/6=3/2*6/5=18/10=9/5

e: =>2/5x-1/2=3/4 hoặc 2/5x-1/2=-3/4

=>2/5x=5/4 hoặc 2/5x=-1/4

=>x=5/4:2/5=25/8 hoặc x=-1/4:2/5=-1/4*5/2=-5/8

f: =>14x-21=9x+6

=>5x=27

=>x=27/5

h: =>(2/3)^2x+1=(2/3)^27

=>2x+1=27

=>x=13

i: =>5^3x*(2+5^2)=3375

=>5^3x=125

=>3x=3

=>x=1

16 tháng 9 2017

cái này mà bạn ko biết làm á, bấm máy tính tạch tạch mấy phát là ra mà

17 tháng 9 2017

lười làm nên nhờ mấy bạn giải dùm

3 tháng 8 2017

a) \(x+\dfrac{3}{10}=\dfrac{-2}{5}\)

\(x=\dfrac{-2}{5}-\dfrac{3}{10}\)

\(x=\dfrac{-7}{10}\)

b) \(x+\dfrac{5}{6}=\dfrac{2}{5}-\left(-\dfrac{2}{3}\right)\)

\(x+\dfrac{5}{6}=\dfrac{2}{5}+\dfrac{2}{3}\)

\(x+\dfrac{5}{6}=\dfrac{16}{15}\)

\(x=\dfrac{16}{15}-\dfrac{5}{6}\)

\(x=\dfrac{7}{30}\)

c) \(1\dfrac{2}{5}x+\dfrac{3}{7}=-\dfrac{4}{5}\)

\(\dfrac{7}{5}x+\dfrac{3}{7}=-\dfrac{4}{5}\)

\(\dfrac{7}{5}x=-\dfrac{4}{5}-\dfrac{3}{7}\)

\(\dfrac{7}{5}x=\dfrac{-43}{35}\)

\(\Rightarrow x=\dfrac{-43}{49}\)

d) \(\left[x+\dfrac{3}{4}\right]-\dfrac{1}{3}=0\)

\(\left[x+\dfrac{3}{4}\right]=0+\dfrac{1}{3}\)

\(\left[x+\dfrac{3}{4}\right]=\dfrac{1}{3}\)

\(x=\dfrac{1}{3}-\dfrac{3}{4}\)

\(x=\dfrac{-5}{12}\)

e) \(\left[x+\dfrac{4}{5}\right]-\left(-3,75\right)=-\left(-2,15\right)\)

\(\left[x+\dfrac{4}{5}\right]+3,75=2,15\)

\(x+\dfrac{4}{5}=2,15-3,75\)

\(x+\dfrac{4}{5}=-\dfrac{8}{5}\)

\(x=\dfrac{-8}{5}-\dfrac{4}{5}\)

\(x=\dfrac{-12}{5}\)

f) \(\left(x-2\right)^2=1\)

\(\Rightarrow x=1\)

Sức chịu đựng có giới hạn -.-

3 tháng 8 2017

- Mình tiếp tục cho Nguyễn Phương Trâm nhé.

g, \(\left(2x-1\right)^3=-27\)

\(\Rightarrow\left(2x-1\right)^3=\left(-3\right)^3\)

\(\Rightarrow2x-1=-3\)

\(\Rightarrow2x=-2\)

=> \(x=-1\)

- Vậy x = -1

h,\(\dfrac{x-1}{-15}=-\dfrac{60}{x-1}\)

\(\Rightarrow\left(x-1\right)^2=-60.\left(-15\right)\)

\(\Rightarrow\left(x-1\right)^2=900 \)

\(\Rightarrow\left(x-1\right)^2=30^2\Rightarrow x-1=30\)

=> x = 31

i,\(x:\left(\dfrac{-1}{2}\right)^3=\dfrac{-1}{2}\)

=> \(x:\left(-\dfrac{1}{8}\right)=-\dfrac{1}{2}\)

\(\Rightarrow x=\dfrac{1}{16}\)

- Vậy x=\(\dfrac{1}{16}\)

j, \(\left(\dfrac{3}{4}\right)^5.x=\left(\dfrac{3}{4}\right)^7\)

\(\Rightarrow \left(\dfrac{3}{4}\right).x=\left(\dfrac{3}{4}\right)^2\)

\(\Rightarrow x=\left(\dfrac{3}{4}\right)^2:\dfrac{3}{4}\)

\(\Rightarrow x=\dfrac{3}{4}\)

- Vạy x = \(\dfrac{3}{4}\)

k, \(8^x:2^x=4\Rightarrow\left(8:2\right)^x=4\)

=>\(4^x=4\)

=> x = 1

- Vậy x = 1

6 tháng 5 2018

C1:Chương IV : Biểu thức đại số

6 tháng 5 2018

C2: Có sai sót j mong bn thông cảm! Viết hơi ẩu ☺Chương IV : Biểu thức đại số

1) Tính \(A=\dfrac{1}{13}+\dfrac{3}{13.23}+\dfrac{3}{23.33}+...+\dfrac{3}{2003.2013}\) \(B=\left(\dfrac{1}{2}-1\right).\left(\dfrac{1}{3}-1\right).\left(\dfrac{1}{4}-1\right)....\left(\dfrac{1}{2018}-1\right)\) 2) Tìm x biết: a) \(x^2-2x-15=0\) b) \(\dfrac{3}{\left(x+2\right).\left(x+5\right)}+\dfrac{5}{\left(x+5\right).\left(x+10\right)}+\dfrac{7}{\left(x+10\right).\left(x+17\right)}=\dfrac{x+1}{\left(x+2\right).\left(x+17\right)}\) 3) Cho \(\dfrac{a}{b}=\dfrac{d}{c}\) . Chứng...
Đọc tiếp

1) Tính

\(A=\dfrac{1}{13}+\dfrac{3}{13.23}+\dfrac{3}{23.33}+...+\dfrac{3}{2003.2013}\)

\(B=\left(\dfrac{1}{2}-1\right).\left(\dfrac{1}{3}-1\right).\left(\dfrac{1}{4}-1\right)....\left(\dfrac{1}{2018}-1\right)\)

2) Tìm x biết:

a) \(x^2-2x-15=0\)

b) \(\dfrac{3}{\left(x+2\right).\left(x+5\right)}+\dfrac{5}{\left(x+5\right).\left(x+10\right)}+\dfrac{7}{\left(x+10\right).\left(x+17\right)}=\dfrac{x+1}{\left(x+2\right).\left(x+17\right)}\)

3) Cho \(\dfrac{a}{b}=\dfrac{d}{c}\) . Chứng minh: \(\dfrac{a^2+d^2}{b^2+c^2}=\dfrac{ad}{bc}\)

4) Cho \(f\left(x\right)=x^{100}-x^{99}+...+x^2-x+1\)

\(g\left(x\right)=-x^{101}+x^{100}-x^{99}+...+x^2-x+1\)

Tính giá trị của hiệu \(f\left(x\right)-g\left(x\right)\) tại x=0,1

5) Cho tam giác ABC có \(\widehat{A}=\ge90\) ; \(M\in AB,N\in AC\)

Chứng minh: BC > MN

6) Cho tam giác ABC, M là trung điểm BC, biết \(\widehat{BAM}>\widehat{CAM}\) . So sánh B và C

2
21 tháng 3 2018

1)\(B=\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot\dfrac{3}{4}\cdot...\cdot\dfrac{2017}{2018}\)

\(B=\dfrac{1}{2018}\)

2)a)\(x^2-2x-15=0\)

\(\Leftrightarrow x^2-2x+1-16=0\)

\(\Leftrightarrow\left(x-1\right)^2-16=0\)

\(\Leftrightarrow\left(x-5\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-3\end{matrix}\right.\)

3)\(\dfrac{a}{b}=\dfrac{d}{c}\)

\(\Rightarrow\dfrac{a^2}{b^2}=\dfrac{d^2}{c^2}=\dfrac{a}{b}\cdot\dfrac{d}{c}=\dfrac{ad}{bc}\)

Lại có:\(\dfrac{a^2}{b^2}=\dfrac{d^2}{c^2}=\dfrac{a^2+d^2}{b^2+c^2}\)

\(\Rightarrow\dfrac{a^2+d^2}{b^2+c^2}=\dfrac{ad}{bc}\)

4)Ta có:\(g\left(x\right)=-x^{101}+x^{100}-x^{99}+...+x^2-x+1\)

\(g\left(x\right)=-x^{101}+\left(x^{100}-x^{99}+...+x^2-x+1\right)\)

\(g\left(x\right)=-x^{101}+f\left(x\right)\)

\(\Rightarrow f\left(x\right)-g\left(x\right)=f\left(x\right)+x^{101}-f\left(x\right)=x^{101}\)

Tại x=0 thì f(x)-g(x)=0

Tại x=1 thì f(x)-g(x)=1

24 tháng 3 2018

CHu làm cô liễu ko lo làm Mai báo cô

a: \(=-\dfrac{1}{15}x^6y\)

b: \(=\dfrac{4}{5}ab^5\cdot2x^3y\cdot\left(-y\right)=-\dfrac{8}{5}ab^5\cdot x^3y^2\)

c: \(=-16\cdot\dfrac{3}{4}v^3\cdot\dfrac{-2}{5}uv=\dfrac{24}{5}v^4u\)

d: \(=8\cdot\left(-64\right)\cdot5\cdot u^2v^2\cdot\left(-27\right)v^3=69120u^2v^5\)

e: \(=-10y\cdot8y^3z^3\cdot25z^2=-2000y^4z^5\)