Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương trình hoành độ giao điểm của đồ thị và đường thẳng là \(-x+m=\frac{x^2-1}{x}\)
\(\Leftrightarrow2x^2-mx-1=0\) (*) (vì x = 0 không là nghiệm của (*))
Vì ac < 0 nên phương trình (*) luôn có 2 nghiệm phân biệt khác không
Do đó đồ thị và đường thẳng luôn cắt nhau tại hai điểm phân biệt :
\(A\left(x_1;-x_1+m\right);B\left(x_2;-x_2+m\right)\)
\(AB=4\Leftrightarrow\sqrt{\left(x_2-x_1\right)^2+\left(-x_2+m+x_1+m\right)^2}=4\)
\(\Leftrightarrow2\left(x_2-x_1\right)^2=16\)
\(\Leftrightarrow\left(x_2+x_1\right)^2-4x_2x_1=8\)
Áp ụng định lý Viet ta có : \(\begin{cases}x_2+x_1=\frac{m}{2}\\x_2x_1=-\frac{1}{2}\end{cases}\)
\(AB=4\Leftrightarrow\frac{m^2}{4}+2=8\Leftrightarrow m=\pm2\sqrt{6}\)
Vậy \(m=\pm2\sqrt{6}\) là giá trị cần tìm
Hoành độ giao điểm của d : y = mx+2 với (C) là nghiệm phương trình :
\(\begin{cases}x>0\\\log^2_2x-\log_2x^2-3\ge0\end{cases}\)
Dễ thấy với m = 0 thì (1) vô nghiệm. Đường thẳng d cắt (C) tại hai điểm phân biệt khi và chỉ khi (1) có 2 nghiệm phân biệt khác -1. Điều kiện là
\(\begin{cases}\Delta>0\\m\left(-1\right)^2+m\left(-1\right)+3\ne0\end{cases}\) \(\Leftrightarrow m^2-12m>0\) \(\Leftrightarrow m<0\) hoặc m > 12 (*)
Với (*) giả sử x1, x2 là 2 nghiệm phân biệt của (1), khi đó tọa độ các giao điểm là :
\(A\left(x_1;mx_1+2\right);B\left(x_2;mx_2+2\right)\)
Dễ thất điểm O không thuộc d nên ABO là một tam giác.
Tam giác ABO vuông tại O khi và chỉ khi :
\(\overrightarrow{OA}.\overrightarrow{OB}=0\Leftrightarrow\left(1+m^2\right)x_1x_2+2m\left(x_1+x_2\right)+4=0\)
Áp dụng định lí Viet ta có : \(x_1+x_2=-1;x_1x_2=\frac{3}{m}\)
Thay vào trên ta được :
\(m^2+4m+3=0\Leftrightarrow m=-3\) hoặc \(m=-1\) (thỏa mãn (*)
Vậy \(m=-3\) hoặc \(m=-1\)
\(\frac{2x-1}{-x-1}=-2x+m\Leftrightarrow\begin{cases}2x^2-\left(m+4\right)x+1=0\left(1\right)\\x\ne1\end{cases}\)
Đường thẳng y=-2x+m cắt (C) tại 2 điểm phân biệt \(\Leftrightarrow\) phương trình (1) có 2 nghiệm phân biệt khác 1
\(\Leftrightarrow\begin{cases}\left(m+4\right)^2-8\left(m+1\right)>0\\-1\ne0\end{cases}\) \(\Leftrightarrow m^2+8>0\) với mọi m
Vậy với mọi m, đường thẳng y=x+m luôn cắt đồ thị C tại 2 điểm phân biệt có hoành độ \(x_1,x_2\) và \(x_1\ne x_2\)
Theo Viet : \(x_1+x_2=\frac{4+m}{2},x_1.x_2=\frac{m+1}{2}\)
\(x_1x_2-4\left(x_1+x_2\right)=\frac{7}{2}\Leftrightarrow\frac{m+1}{2}-4\left(\frac{m+4}{2}\right)=\frac{7}{2}\Leftrightarrow m=-\frac{22}{3}\)
Vậy \(m=-\frac{22}{3}\) thì đường thẳng \(y=-2x+m\) cắt đồ thì (C) tại 2 điểm phân biệt có hoành độ \(x_1,x_2\) và \(x_1x_2-4\left(x_1+x_2\right)=\frac{7}{2}\)
Hoành độ giao điểm của đường thẳng y = m và (C) là nghiệm của phương trình :
\(x^4-2x^2=m\Leftrightarrow x^4-2x^2-m=0\) (*)
Đặt \(t=x^2,t\ge0\), phương trình (*) trở thành : \(t^2-2t-m=0\) (**)
Đường thẳng y = m và (C) cắt nhau tại 4 điểm phân biệt \(\Leftrightarrow\) phương trình (*) có 4 nghiệm phân biệt; \(\Leftrightarrow\) có 2 nghiệm phân biệt
\(t2 > t1 > 0\)\(\Leftrightarrow\begin{cases}\Delta'>0\\S>0\\P>0\end{cases}\) \(\Leftrightarrow\begin{cases}1+m>0\\2>0\\-m>0\end{cases}\) \(\Leftrightarrow\) \(-1 < m < 0\)
Khi đó phương trình (*) có 4 nghiệm là
\(x_1=-\sqrt{t_2};x_2=-\sqrt{t_1};x_3=\sqrt{t_1};x_4=\sqrt{t_2};\)
\(\Rightarrow x_1=-x_4;x_2=-x_3\)
Ta có \(y'=4x^3-4x\) do đó tổng các hệ số của tiếp tuyến tại cá điểm E, F, M, N là
\(k_1+k_2+k_3+k_4=\left(4x_1^3-4x_1\right)+\left(4x_2^3-4x_2\right)+\left(4x_3^3-4x_3\right)+\left(4x_4^3-4x_4\right)\)
\(=4\left(x_1^3+x^3_4\right)+4\left(x_2^3+x^3_3\right)-4\left(x_1+x_4\right)-4\left(x_2+x_3\right)=0\)
Ta có \(d:y=mx-m-2\)
Hoành độ giao điểm là nghiệm của phương trình :
\(\frac{x-3}{1-x}=mx-m-2\Leftrightarrow\begin{cases}x\ne1\\mx^2-\left(2m+1\right)x+m-1=0\end{cases}\)
Điều kiện để cắt nhau tại hai điểm phân biệt là : \(\begin{cases}m\ne0\\m>-\frac{1}{8}\end{cases}\)
Gọi \(M\left(x_1;y_1\right);N\left(x_2;y_2\right)\) khi đó \(\begin{cases}x_1+x_2=\frac{2m+1}{m}\\x_1x_2=\frac{m-1}{2}\end{cases}\)
Ta có \(\overrightarrow{AM}=-2\overrightarrow{AN}\Rightarrow x_1=3-2x_2\)
Từ đó ta có m = 1
Lấy \(M\left(m;m^4-5m^2+4\right)\in\left(C\right)\)
Suy ra phương trình (C) tại M : \(y=\left(4m^3-10m\right)\left(x-m\right)+m^4-5m^2+4\left(d\right)\)
Hoành độ của (d) và (C) là nghiệm của phương trình :
\(x^4-5x^2+4=\left(4m^3-10m\right)\left(x-m\right)+m^4-5m^2+4\)
\(\Leftrightarrow\left(x-m\right)^2\left(x^2+2mx+3m^2-5\right)=0\left(1\right)\)
Yêu cầu bài toán \(\Leftrightarrow x^2+2mx+3m^2-5=0\) có 2 nghiệm phân biệt khác m :
\(\Leftrightarrow\begin{cases}5-2m^2>0\\6m^2-5\ne0\end{cases}\)
Vậy \(m\in\left(-\frac{\sqrt{10}}{2};\frac{\sqrt{10}}{2}\right)\)\ \(\left\{\pm\frac{\sqrt{30}}{6}\right\}\)
Đường tròn (S) tâm \(I\left(-1;-3\right)\) bán kính \(R=3\)
Thế tọa độ A vào pt (S) thỏa mãn nên A nằm trên đường tròn
Ta cần tìm B, C sao cho chi vi ABC lớn nhất
Đặt \(\left(AB;AC;BC\right)=\left(c;b;a\right)\Rightarrow\dfrac{a}{sinA}=\dfrac{b}{sinB}=\dfrac{c}{sinC}=2R\)
\(\Rightarrow a+b+c=2R\left(sinA+sinB+sinC\right)\)
Mặt khác ta có BĐT quen thuộc \(sinA+sinB+sinC\le\dfrac{3\sqrt{3}}{2}\)
Dấu "=" xảy ra khi tam giác ABC đều
\(\Rightarrow a=b=c=2R.sin60^0=3\sqrt{3}\)
Khi đó I đồng thời là trọng tâm kiêm trực tâm \(\Rightarrow\left\{{}\begin{matrix}BC\perp AI\\d\left(A;BC\right)=\dfrac{a\sqrt{3}}{2}=\dfrac{9}{2}\end{matrix}\right.\)
\(\Rightarrow\) Phương trình BC có dạng \(y=-\dfrac{3}{2}\)
Hay (Cm) có 1 tiếp tuyến là \(y=-\dfrac{3}{2}\) (hệ số góc bằng 0 nên tiếp tuyến này đi qua 2 cực tiểu)
\(\Rightarrow m=-1\)
Lời giải:
PT hoành độ giao điểm:
\(x^2(m-1)+x(12-7m)+(10m-29)=0(1)\)
Để hai đồ thị hàm số cắt nhau tại hai điểm phân biệt thì PT $(1)$ phải có hai nghiệm phân biệt \(\Leftrightarrow \left\{\begin{matrix} m\neq 1\\ \Delta=(12-7m)^2-4(m-1)(10m-29)>0\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} m\neq 1\\ 9m^2-12m+28=(3m-2)^2+24>0\end{matrix}\right.\Leftrightarrow m\neq 1\)
Khi đó , áp dụng định lý Viete, nếu $x_1,x_2$ là hai nghiệm của $(1)$ thì: \(x_1+x_2=\frac{7m-12}{m-1}\)
Hai giao điểm của hai ĐTHS là \(A(x_1,m(x_1-5)+10);B(x_2,m(x_2-5)+10)\)
\(M(5,10)\) là trung điểm của $AB$
\(\Leftrightarrow \left\{\begin{matrix} \frac{x_1+x_2}{2}=5\\ \frac{y_1+y_2}{2}=\frac{m(x_1+x_2)-10m+20}{2}=10\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} \frac{7m-12}{m-1}=10\\ \frac{m(7m-12)}{m-1}=10m\end{matrix}\right.\)
Suy ra \(m=\frac{-2}{3}\) (thỏa mãn)