Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(m^2-4m+5\right)x^2\)
\(m^2-4m+5=m^2-2\cdot m\cdot2+2^2+1=\left(m-2\right)^2+1>0\)với mọi m
=> \(a>0\)
Do đóhàm số nghịch biến khi x<0 và đồng biến khi x>0
a: Khi x>0 thì y>0
=> Hàm số đồng biến
Khi x<0 thì y<0
=> Hàm số nghịch biến
a) Khi \(x>0\)thì hàm số đã cho đồng biến \(\Leftrightarrow3m-2>0\)
\(\Leftrightarrow3m>2\)\(\Leftrightarrow m>\frac{2}{3}\)
b) Khi \(x>0\)thì hàm số đã cho nghịch biến \(\Leftrightarrow3m-2< 0\)
\(\Leftrightarrow3m< 2\)\(\Leftrightarrow m< \frac{2}{3}\)
+) Với \(x< 0\)chọn \(x_1< x_2< 0\), ta có :
\(f\left(x_1\right)-f\left(x_2\right)=\left(x_1^4-x_2^4\right)+2\left(x_1^2-x_2^2\right)=\left(x_1-x_2\right)\left(x_1+x_2\right)\left(x_1^2+x_2^2+2\right)\)
Vì \(x_1< x_2< 0\) nên \(\hept{\begin{cases}x_1-x_2< 0\\x_1+x_2< 0\end{cases}}\) và \(x_1^2+x_2^2+2>0\)
Suy ra \(\left(x_1-x_2\right)\left(x_1+x_2\right)\left(x_1^2+x_2^2+2\right)>0\)
\(\Rightarrow\hept{\begin{cases}x_1< x_2< 0\\f\left(x_1\right)>f\left(x_2\right)\end{cases}}\) => Hàm số nghịch biến.
+) Tương tự, với \(x\ge0\)ta chọn \(x_2>x_1\ge0\) thì ta có \(\hept{\begin{cases}x_1-x_2< 0\\x_1+x_2\ge0\end{cases}}\) và \(x_1^2+x_2^2+2>0\)
Suy ra \(\left(x_1-x_2\right)\left(x_1+x_2\right)\left(x_1^2+x_2^2+2\right)< 0\)
\(\Rightarrow\hept{\begin{cases}x_2>x_1\ge0\\f\left(x_2\right)>f\left(x_1\right)\end{cases}}\) => Hàm số đồng biến.
a, Vì \(1-\sqrt{5}< 0\)nên hàm nghịch biến
b, \(x=1+\sqrt{5}x\)
\(\Leftrightarrow x-x\sqrt{5}=1\)
\(\Leftrightarrow x\left(1-\sqrt{5}\right)=1\)
\(\Leftrightarrow x=\frac{1}{1-\sqrt{5}}\)
Khi đó \(y=\left(1-\sqrt{5}\right).\frac{1}{1-\sqrt{5}}-1=1-1=0\)
b, \(y=-\sqrt{5}\)
\(\Leftrightarrow\left(1-\sqrt{5}\right)x-1=-\sqrt{5}\)
\(\Leftrightarrow\left(1-\sqrt{5}\right)x=1-\sqrt{5}\)
<=> x = 1
Lời giải
Xét \(x_1>x_2\) ta có:
\(y(x_1)-y(x_2)=(3x_1^2+6x_1+5)-(3x_2^2+6x_2+5)\)
\(=3(x_1^2-x_2^2)+6(x_1-x_2)\)
\(=3(x_1-x_2)(x_1+x_2)+6(x_1-x_2)=3(x_1-x_2)(x_1+x_2+2)\)
\(>0\) với mọi \(x_1>x_2>-1\)
\(\Rightarrow y(x_1)>y_(x_2)\) với mọi \(x_1>x_2>-1\)
Do đó hàm số đồng biến khi \(x>-1\)
b) Làm tương tự, ngược lại suy ra đpcm.
a) đặc : \(f\left(x\right)=y=3x^2+6x+5\)
giả sử \(-1< a< b\)
khi đó ta có : \(\dfrac{f\left(a\right)-f\left(b\right)}{a-b}=\dfrac{3a^2+6a+5-3b^2-6b-5}{a-b}\)
\(=\dfrac{3\left(a ^2-b^2\right)+6\left(a-b\right)}{a-b}=\dfrac{3\left(a+b\right)\left(a-b\right)+6\left(a-b\right)}{a-b}\)
\(=\dfrac{3\left(a+b+2\right)\left(a-b\right)}{a-b}=3\left(a+b+2\right)\)
vì \(-1< a< b\Rightarrow a+b+2>0\Leftrightarrow3\left(a+b+2\right)>0\)
\(\Rightarrow\dfrac{f\left(a\right)-f\left(b\right)}{a-b}>0\) \(\Rightarrow\) hàm số này đồng biến khi \(x>-1\) (đpcm)
b) đặc : \(f\left(x\right)=y=3x^2+6x+5\)
giả sử \(a< b< -1\)
khi đó ta có : \(\dfrac{f\left(a\right)-f\left(b\right)}{a-b}=\dfrac{3a^2+6a+5-3b^2-6b-5}{a-b}\)
\(=\dfrac{3\left(a ^2-b^2\right)+6\left(a-b\right)}{a-b}=\dfrac{3\left(a+b\right)\left(a-b\right)+6\left(a-b\right)}{a-b}\)
\(=\dfrac{3\left(a+b+2\right)\left(a-b\right)}{a-b}=3\left(a+b+2\right)\)
vì \(a< b< -1\Rightarrow a+b+2< 0\Leftrightarrow3\left(a+b+2\right)< 0\)
\(\Rightarrow\dfrac{f\left(a\right)-f\left(b\right)}{a-b}< 0\) \(\Rightarrow\) hàm số này nghịch biến khi \(x< -1\) (đpcm)