K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2021

\(b,\) PT giao Ox và Oy: 

\(y=0\Leftrightarrow x=2\Leftrightarrow A\left(2;0\right)\Leftrightarrow OA=2\\ x=0\Leftrightarrow y=-4\Leftrightarrow B\left(0;-4\right)\Leftrightarrow OB=4\)

Gọi H là chân đường cao từ O đến (d)

Áp dụng HTL: \(\dfrac{1}{OH^2}=\dfrac{1}{OA^2}+\dfrac{1}{OB^2}=\dfrac{1}{4}+\dfrac{1}{16}=\dfrac{5}{16}\)

\(\Leftrightarrow OH^2=\dfrac{16}{5}\Leftrightarrow OH=\dfrac{4}{\sqrt{5}}\left(cm\right)\)

Vậy k/c là \(\dfrac{4}{\sqrt{5}}\left(cm\right)\)

\(c,\Leftrightarrow\left\{{}\begin{matrix}a=2;b\ne-4\\0a+b=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=3\end{matrix}\right.\)

29 tháng 12 2021

b: Vì (d')//(d) nên a=2

Vậy: (d'): y=2x+b

Thay x=1 và y=4 vào (d'), ta được:

b+2=4

hay b=2

29 tháng 12 2021

cảm ơn nhiều ạ

b: Vì (d1)//(d) nên (d1): y=-2x+b

=>a=-2

Thay x=2 và y=1 vào (d1), ta được:
b-4=1

=>b=5

a: loading...

Bài 1: Cho hàm số y=[ m-2]x + 3a. Tìm m để đồ thị [d] của hàm số song song với đường thẳng y=x - 2Vẽ [d] trong trường hợp này và tính góc tạo bởi [d] với trục hoànhb. Tìm m để đồ thị [d] của hàm số đồng qui với hai đường thẳng y= -2x + 1 và y= -x + 4Bài 2 : Trên mặt phẳng tọa độ cho ba điểm A[2;3], B[-1;-3] và C[0;1]a] Tìm hệ số góc của đường thẳng ABb] Chứng tỏ rằng ba điểm A,B,C thẳng...
Đọc tiếp

Bài 1: Cho hàm số y=[ m-2]x + 3

a. Tìm m để đồ thị [d] của hàm số song song với đường thẳng y=x - 2

Vẽ [d] trong trường hợp này và tính góc tạo bởi [d] với trục hoành

b. Tìm m để đồ thị [d] của hàm số đồng qui với hai đường thẳng y= -2x + 1 và y= -x + 4

Bài 2 : Trên mặt phẳng tọa độ cho ba điểm A[2;3], B[-1;-3] và C[0;1]

a] Tìm hệ số góc của đường thẳng AB

b] Chứng tỏ rằng ba điểm A,B,C thẳng hàng 

Bài 3: Cho hàm số y= mx- 2m - 1

a] Định m để đồ thị hàm số đi qua gốc tạo độ O \

b] Gọi A,B lần lượt là giao điểm của đồ thị hàm số với các trục Ox, Oy. Định m để diện tích tam giác OAB bằng [ đvdt]

c] Chứng minh rằng với mọi giá trị của m thì đồ thị của hàm số đã cho luôn đi qua một điểm cố định 

0
23 tháng 8 2023

Do (d1) song song với đường thẳng y = 2x nên a = 2

(d1): y = 2x + b

Thay tọa độ điểm (1; -1) vào (d) ta được:

2.1 + b = -1

⇔ b = -1 - 2

⇔ b = -3

Vậy (d1): y = 2x - 3

b) x = 0 ⇒ y = -3

*) Đồ thị:

loading...  

c) Phương trình hoành độ giao điểm của (d1) và (d2):

2x - 3 = 1/2 x + 1

⇔ 2x - 1/2 x = 1 + 3

⇔ 3/2 x = 4

⇔ x = 4 : 2/3

⇔ x = 8/3

⇒ y = 2.8/3 - 3 = 7/3

Vậy tọa độ giao điểm của (d1) và (d2) là (8/3; 7/3)

d) Ta có:

Gọi a là góc cần tính

⇒ tan(a) = 2

⇒ a ≈ 63⁰

23 tháng 8 2023

(b) và (d) bạn tự xem kiến thức vẽ rồi áp dụng công thức tan là làm được nha=)

a)

Đồ thị hàm số (d1)// đường thẳng `y=2x`

=> \(\left\{{}\begin{matrix}a=a'\\b\ne b'\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b\ne0\end{matrix}\right.\)

=> `y=2x+b`

Do hàm số `y=2x+b` đi qua điểm `(1;-1)` nên `x=1`, `y=-1`:

`-1=2.1+b`

=> `b=-3`

Vậy hàm số `y=ax+b` là `y=2x-3`

c)

Ta có PTHĐGĐ giữa `d_1` và `d_2`:

 \(2x-3=\dfrac{1}{2}x+1\\ \Rightarrow x=\dfrac{8}{3}\Rightarrow y=\dfrac{7}{3}\)

Vậy `E=`\(\left(\dfrac{8}{3};\dfrac{7}{3}\right)\)

$HaNa$

31 tháng 12 2021

b: Tọa độ giao điểm là:

\(\left\{{}\begin{matrix}3x=-2x+5\\y=3x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=3\end{matrix}\right.\)

6 tháng 12 2023

a) Đồ thị:

loading...  

b) Gọi giao điểm của đồ thị của hàm số y = x - 1 với trục tung, với trục hoành lần lượt là 2 điểm B và C

Thay x = 0 vào hàm số y = x - 1 ta có:

y = 0 - 1 = - 1

⇒ B(0; -1)

Thay y = 0 vào hàm số y = x - 1 ta có:

x - 1 = 0

⇔ x = 1

⇒ C(1; 0)

c) Gọi (t): y = ax + b (a 0)

Do (t) // (d) nên a = -2

⇒ (t): y = -2x + b

Thay y = -3 vào (d') ta có:

x - 1 = -3

⇔ x = -3 + 1

⇔ x = -2

Thay x = -2; y = -3 vào (t) ta có:

-2.(-2) + b = -3

⇔ 4 + b = -3

⇔ b = -3 - 4

⇔ b = -7

Vậy (t): y = -2x - 7